Dictionary Learning in Visual Computing

Dictionary Learning in Visual Computing

Author: Qiang Zhang

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 133

ISBN-13: 303102253X

DOWNLOAD EBOOK

The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.


Computer Vision – ECCV 2012

Computer Vision – ECCV 2012

Author: Andrew Fitzgibbon

Publisher: Springer

Published: 2012-09-26

Total Pages: 909

ISBN-13: 3642337090

DOWNLOAD EBOOK

The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.


Sparse Representations and Compressive Sensing for Imaging and Vision

Sparse Representations and Compressive Sensing for Imaging and Vision

Author: Vishal M. Patel

Publisher: Springer Science & Business Media

Published: 2013-02-11

Total Pages: 111

ISBN-13: 1461463815

DOWNLOAD EBOOK

Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal. These measurements are usually much smaller than the number of samples that define the signal. From these small numbers of measurements, the signal is then reconstructed by non-linear procedure. Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways. In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.


Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing

Author: Julien Mairal

Publisher: Now Publishers

Published: 2014-12-19

Total Pages: 216

ISBN-13: 9781680830088

DOWNLOAD EBOOK

Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.


Sparse Representation, Modeling and Learning in Visual Recognition

Sparse Representation, Modeling and Learning in Visual Recognition

Author: Hong Cheng

Publisher: Springer

Published: 2015-05-25

Total Pages: 259

ISBN-13: 1447167147

DOWNLOAD EBOOK

This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.


Visual Object Tracking using Deep Learning

Visual Object Tracking using Deep Learning

Author: Ashish Kumar

Publisher: CRC Press

Published: 2023-11-20

Total Pages: 216

ISBN-13: 1000990982

DOWNLOAD EBOOK

This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also: Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methods Elaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexity Illustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenarios Explores the future research directions for visual tracking by analyzing the real-time applications The book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.


Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014

Author: David Fleet

Publisher: Springer

Published: 2014-08-14

Total Pages: 875

ISBN-13: 3319105787

DOWNLOAD EBOOK

The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.


Mathematics for Econometrics

Mathematics for Econometrics

Author: P.J. Dhrymes

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 142

ISBN-13: 1475716915

DOWNLOAD EBOOK

This booklet was begun as an appendix to Introductory Econometrics. As it progressed, requirements of consistency and completeness of coverage seemed to make it inordinately long to serve merely as an appendix, and thus it appears as a work in its own right. Its purpose is not to give rigorous instruction in mathematics. Rather it aims at filling the gaps in the typical student's mathematical training, to the extent relevant for the study of econometrics. Thus, it contains a collection of mathematical results employed at various stages of Introductory Econometrics. More generally, however, it would be a useful adjunct and reference to students of econometrics, no matter what text is being employed. In the vast majority of cases, proofs are provided and there is a modicum of verbal discussion of certain mathematical results, the objective being to reinforce the reader's understanding of the formalities. In certain instances, however, when proofs are too cumbersome, or complex, or when they are too obvious, they are omitted.


Computer Vision

Computer Vision

Author: Hongbin Zha

Publisher: Springer

Published: 2015-09-18

Total Pages: 491

ISBN-13: 3662485702

DOWNLOAD EBOOK

The two volumes CCIS 546 and 547 constitute the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2015, held in Xi'an, China, in September 2015. The total of 89 revised full papers presented in both volumes were carefully reviewed and selected from 176 submissions. The papers address issues such as computer vision, machine learning, pattern recognition, target recognition, object detection, target tracking, image segmentation, image restoration, face recognition, image classification.


Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012

Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012

Author: Nicholas Ayache

Publisher: Springer

Published: 2012-08-28

Total Pages: 645

ISBN-13: 9783642334535

DOWNLOAD EBOOK

The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The third volume includes 79 papers organized in topical sections on diffusion imaging: from acquisition to tractography; image acquisition, segmentation and recognition; image registration; neuroimage analysis; analysis of microscopic and optical images; image segmentation; diffusion weighted imaging; computer-aided diagnosis and planning; and microscopic image analysis.