Devices based on liquid crystals have become the mainstay of display technology used in mobile devices, vehicles, computer systems, and almost any other opportunity for information display imaginable. The aim of this book is to provide the optics community a liquid crystals primer that focuses on the optical components made from these fascinating materials. The book provides a functional overview of liquid crystal devices, their history, and their applications so that readers are prepared for more advanced texts and can continue to grow their abilities in this field. While it is not meant to be a complete mathematical treatise on the basics and applications of liquid crystals, the book does fill in some of the technical gaps, in particular in the area of adaptive optics applications.
This is a monograph/text devoted to a detailed treatment of the optical, electro-optical and nonlinear optical properties of all the mesophases of liquid crystals and related processes, phenomena and application principles. Quantitative data on material and optical parameters spanning the ultraviolet, visible, infrared as well as the microwave regimes are presented along with detailed theoretical treatments of basic liquid crystal physics, material properties and nonlinear optics.Starting with a discussion on the basic building blocks of liquid crystalline molecules, the authors proceed to present in a pedagogical manner current theories, experiments, and applications of these unique and important optical properties of liquid crystals. Numerous tables of hard-to-find liquid crystalline parameters, a self-contained chapter on general nonlinear optics, and comprehensive literature review are also included.
Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.
Practically every display technology in use today relies on the flat, energy-efficient construction made possible by liquid crystals. These displays provide visually-crisp, vibrantly-colored images that a short time ago were thought only possible in science fiction. Liquid crystals are known mainly for their use in display technologies, but they also provide many diverse and useful applications: adaptive optics, electro-optical devices, films, lasers, photovoltaics, privacy windows, skin cleansers and soaps, and thermometers. The striking images of liquid crystals changing color under polarized lighting conditions are even on display in many museums and art galleries--true examples of 'science meeting art'. Although liquid crystals provide us with visually stunning displays, fascinating applications, and are a rich and fruitful source of interdisciplinary research, their full potential may yet remain untapped.
In the CRC Handbook of Laser Science and Technology: Supplement 2, experts summarize the discovery and properties of new optical materials that have appeared since the publication of Volumes III-V. Included are the latest advances in optical crystals, glasses and plastics, laser host materials, phase conjugation materials, linear electrooptic materials, nonlinear optical materials, magnetooptic materials, elastooptic materials, photorefractive materials, liquid crystals, and thin film coatings. The book also includes expanded coverage of optical waveguide materials and new sections on optical liquids, glass fiber lasers, diamond optics, and gradient index materials. Appendices include Designation of Russian Optical Glasses; Abbreviations, Acronyms, and Mineralogical or Common Names for Optical Materials; and Abbreviations for Methods of Preparing Optical Materials. Extensive tabulations of materials properties with references to the primary literature are provided throughout the supplement. The CRC Handbook of Laser Science and Technology: Supplement 2 represents the latest volume in the most comprehensive, up-to-date listing of the properties of optical materials for lasers and laser systems, making it an essential reference work for all scientists and engineers working in laser research and development.
Compiled by 330 of the most widely respected names in the electro-optical sciences, the Encyclopedia is destined to serve as the premiere guide in the field with nearly 2000 figures, 560 photographs, 260 tables, and 3800 equations. From astronomy to x-ray optics, this reference contains more than 230 vivid entries examining the most intriguing technological advances and perspectives from distinguished professionals around the globe. The contributors have selected topics of utmost importance in areas including digital image enhancement, biological modeling, biomedical spectroscopy, and ocean optics, providing thorough coverage of recent applications in this continually expanding field.
In 1988 physicists and chemists commemorated the centenary of the discovery of the first liquid crystals. Fora long period after this discovery, although many significant results were found, liquid crystal research remained a marginal topic of condensed matter physics. The situation changed in the sixties. At that time the remarkable electro-optical properties of liquid crystals were recognized and found soon widespread application in numeric displays. From a more fundamental point of view, the interest in disordered systems. increased in general at the same time. Liquid crystals represented an important dass of such systems. Among others, phase transitions, hydrodynamics and topological defects occurring in them attracted considerable attention. The connection between the liquid-crystalline state and the structure of biological membranes stimulated a Iot of works also. In the present volume we discuss a relatively new and rapidly developing branch of the fi. eld, namely nonlinear optical effects in liquid crystals. Optical studies have always played a signifi. cant role in liquid crystal science. Research of optical nonlinearities in liquid crystals began at the end of the sixties. Since then it became a powerful tool in the investigation of symmetry properties, interfacial phenomena or dynamic behaviour. Furthermore, several new aspects of nonlinear processes were demonstrated and studied extensively in liquid crystals. The subject covered in this book is therefore of importance both for liquid crystal research and for nonlinear optics itself. The term "nonlinear optics" is used here in a broad sense.
This book on liquid crystals reports on the new perspectives that have been brought about by the recent expansion of frontiers and overhaul of common beliefs. First, it explores the interaction of light with mesophases, when the light or matter is endowed with topological defects. It goes on to show how electrophoresis, electro-osmosis and the swimming of flagellated bacteria are affected by the anisotropic properties of liquid crystals. It also reports on the recent progress in the understanding of thermomechanical and thermohydrodynamical effects in cholesterics and deformed nematics and refutes the common belief that these effects could explain Lehmann’s observations of the rotation of cholesteric droplets subjected to a temperature gradient. It then studies the physics of the dowser texture, which has remarkable properties. This is of particular interest in regards to nematic monopoles, which can easily be generated, set into motion and collided within it. Finally, this book deals with the spontaneous emergence of chirality in nematics made of achiral molecules, and provides a brief historical context of chirality
Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.