Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019)

Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019)

Author: Margarita A. Man’ko

Publisher: MDPI

Published: 2020-11-09

Total Pages: 200

ISBN-13: 3039434241

DOWNLOAD EBOOK

The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.


Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019).

Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019).

Author: Margarita Man'ko

Publisher:

Published: 2020

Total Pages: 200

ISBN-13: 9783039434251

DOWNLOAD EBOOK

The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.


Frontiers in Quantum Optics,

Frontiers in Quantum Optics,

Author: Edward Roy Pike

Publisher: CRC Press

Published: 1986

Total Pages: 608

ISBN-13:

DOWNLOAD EBOOK

The field of quantum optics has progressed rapidly in the last twenty five years with the advent of the laser. Over much of this period the phenomena studied could be described adequately by semiclassical treatments. Quite recently however, there has been a revival of interest in genuinely quantum mechanical effects. The Malvern Symposium of December 1985 brought together world experts for a meeting which concentrated largely on these quantum effects. The presentations in this unique meeting combine review material with the very latest results and so will be of value to students of quantum optics and measurement theory at all levels. The first articles cover the exciting topic of the generation of squeezed states of light in the laboratory, and their possible uses. Experimental success has been long sought and very recently attained. The reader will find presented the state of the art in this field. Next to lasing itself, optical bistability has been the most widely studied phenomenon in quantum optics, largely for its technological promise. However, it also provides a fundamental system to study quuantum effects. Recent theoretical studies of optical bistability with small numbers of atoms are surveyed. In such situations quantum features such as antibunching become significant, and the articles in this volume should be a guide to those venturing into this challenging area. In other articles discussions of fluctuations from other noise sources and instabilities in optical bistabilty are presented in a clear and interesting way. Perhaps the least classical state on quantum optics is that describing a single photon. Recent experiments which produce such states are reviewed. A theoretical review of the photon together with some new material is given which delves deeply into relativistic quantum field theory in order to describe the concept of weakly localised photon states. The material here is very rarely presented in the context of quantum optics. The history of the theory of the quantum fluctuations in a laser is then reviewed. An off-shoot of this theory is the study of quantum chaos in dissipative systems and recent results in this new area are given in a succeeding article. There are further stimulating articles on Rydberg atom systems and quantum electrodynamics. The volume ends with an entertaining and incisive study of quantum measurement problems, such as the Schrodinger cat papadox, using concepts and measuring devices found in quantum optics. other_titles


Symmetries in Science

Symmetries in Science

Author: Bruno Gruber

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 492

ISBN-13: 1468438336

DOWNLOAD EBOOK

Southern Illinois University at Carbondale undertook to honor Albert Einstein as scientist and as humanitarian in commemo ration of his lOOth birthday during an "Albert Einstein Centennial Week", February 23 - March 2, 1979. During the course of this week two Symposia were held, entitled "Symmetries in Science" and "Einstein: Humanities Conscience", in addition to cultural and social activities honoring Einstein. This volume presents the Symposium "Symmetries in Science". It reflects the outstanding response that was given to our "Albert Einstein Centennial Week" by the international community of scientists. The motivation to have a celebration honoring Albert Einstein at Southern Illinois University at Carbondale was supplied by Dr. Paul A. Schilpp, the editor of the "Library of Living Philo sophers". Albert Einstein has contributed to this series with his autobiographical notes, a kind of autobiography of his scientific life, in a volume entitled "Einstein: Scientist-Philosopher", the most popular among all the outstanding volumes of this series. Dr. Paul A. Schilpp's presence at Southern Illinois University at Carbondale provided a natural link for an Einstein Celebration as a kind of a continuation of the contribution he made to mankind through the Einstein volume of his "Library of Living Philosophers".


Introduction to Quantum Information Science

Introduction to Quantum Information Science

Author: Masahito Hayashi

Publisher: Springer

Published: 2014-08-22

Total Pages: 338

ISBN-13: 3662435020

DOWNLOAD EBOOK

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.


Quantum Information Theory

Quantum Information Theory

Author: Mark M. Wilde

Publisher: Cambridge University Press

Published: 2017-02-06

Total Pages: 1020

ISBN-13: 1316813304

DOWNLOAD EBOOK

Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.


A Group Theoretic Approach to Quantum Information

A Group Theoretic Approach to Quantum Information

Author: Masahito Hayashi

Publisher: Springer

Published: 2016-10-31

Total Pages: 240

ISBN-13: 331945241X

DOWNLOAD EBOOK

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.


Group Representation for Quantum Theory

Group Representation for Quantum Theory

Author: Masahito Hayashi

Publisher: Springer

Published: 2016-11-18

Total Pages: 357

ISBN-13: 3319449060

DOWNLOAD EBOOK

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.


Coherent Evolution in Noisy Environments

Coherent Evolution in Noisy Environments

Author: Andreas Buchleitner

Publisher: Springer

Published: 2008-01-11

Total Pages: 304

ISBN-13: 3540458557

DOWNLOAD EBOOK

In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.


Disordered Materials

Disordered Materials

Author: S. K. Tripathi

Publisher: Alpha Science Int'l Ltd.

Published: 2003

Total Pages: 292

ISBN-13: 9788173194634

DOWNLOAD EBOOK

Proceedings of the National Conference on "Recent Developments on Disordered Materials", held in Dept. of Physics, Panjab University, Chandigarh, on 15-16 March, 2001; contributed papers.