Eisenstein Series and Applications

Eisenstein Series and Applications

Author: Wee Teck Gan

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 317

ISBN-13: 0817646396

DOWNLOAD EBOOK

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.


Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa

Author: Masanobu Kaneko

Publisher: World Scientific

Published: 2006-01-03

Total Pages: 400

ISBN-13: 9814478776

DOWNLOAD EBOOK

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.


Automorphic Forms and Zeta Functions

Automorphic Forms and Zeta Functions

Author: Siegfried B”cherer

Publisher: World Scientific

Published: 2006

Total Pages: 400

ISBN-13: 9812774416

DOWNLOAD EBOOK

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L -functions, many of which are closely related to Arakawa''s works. This collection of papers illustrates Arakawa''s contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operators (H Aoki); MarsdenOCoWeinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S BAcherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K-I Hashimoto); Skew-Holomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O (2 n) / (O (n) x O (n) ) (Y Hironaka & F Sato); KoecherOCoMaa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L -Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L -Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp (1, q ) (Arakawa''s Results and Recent Progress) (H-A Narita); On Modular Forms for the Paramodular Groups (B Roberts & R Schmidt); SL(2, Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics."


Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae

Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae

Author: Christian Grosche

Publisher: World Scientific

Published: 2013

Total Pages: 389

ISBN-13: 9814460087

DOWNLOAD EBOOK

In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.


Modern Analysis of Automorphic Forms By Example

Modern Analysis of Automorphic Forms By Example

Author: Paul Garrett

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 367

ISBN-13: 1108473849

DOWNLOAD EBOOK

Volume 2 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.


Degree 16 Standard L-function of $GSp(2) \times GSp(2)$

Degree 16 Standard L-function of $GSp(2) \times GSp(2)$

Author: Dihua Jiang

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 210

ISBN-13: 0821804766

DOWNLOAD EBOOK

Automorphic L-functions, introduced by Robert Langlands in the 1960s, are natural extensions of such classical L-functions as the Riemann zeta function, Hecke L-functions, etc. They form an important part of the Langlands Program, which seeks to establish connections among number theory, representation theory, and geometry. This book offers, via the Rankin-Selberg method, a thorough and comprehensive examination of the degree 16 standard L-function of the product of two rank two symplectic similitude groups, which includes the study of the global integral of Rankin-Selberg type and local integrals, analytic properties of certain Eisenstein series of symplectic groups, and the relevant residue representations.