Seifert Fibered Spaces in 3-Manifolds

Seifert Fibered Spaces in 3-Manifolds

Author: William H. Jaco

Publisher: American Mathematical Soc.

Published: 1979

Total Pages: 204

ISBN-13: 0821822209

DOWNLOAD EBOOK

The main theorem of this monograph, or rather the "absolute" case of the main theorem, provides what is essentially a homotopy-classification of suitably "nondegenerate" maps of Seifert-fibered 3-manifolds into a sufficiently-large, compact, irreducible, orientable 3-manifold M.


Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds

Author: Danny Calegari

Publisher: Oxford University Press on Demand

Published: 2007-05-17

Total Pages: 378

ISBN-13: 0198570082

DOWNLOAD EBOOK

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.


Introduction to 3-Manifolds

Introduction to 3-Manifolds

Author: Jennifer Schultens

Publisher: American Mathematical Soc.

Published: 2014-05-21

Total Pages: 298

ISBN-13: 1470410206

DOWNLOAD EBOOK

This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.


3-manifold Groups

3-manifold Groups

Author: Matthias Aschenbrenner

Publisher: Erich Schmidt Verlag GmbH & Co. KG

Published: 2015

Total Pages: 236

ISBN-13: 9783037191545

DOWNLOAD EBOOK

The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.


History of Topology

History of Topology

Author: I.M. James

Publisher: Elsevier

Published: 1999-08-24

Total Pages: 1067

ISBN-13: 0080534074

DOWNLOAD EBOOK

Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who "gave topology wings" in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.


Topology and Combinatorics of 3-Manifolds

Topology and Combinatorics of 3-Manifolds

Author: Klaus Johannson

Publisher: Springer

Published: 2006-11-14

Total Pages: 464

ISBN-13: 3540491813

DOWNLOAD EBOOK

This book is a study of combinatorial structures of 3-mani- folds, especially Haken 3-manifolds. Specifically, it is concerned with Heegard graphs in Haken 3-manifolds, i.e., with graphs whose complements have a free fundamental group. These graphs always exist. They fix not only a combinatorial stucture but also a presentation for the fundamental group of the underlying 3-manifold. The starting point of the book is the result that the intersection of Heegard graphs with incompressible surfaces, or hierarchies of such surfaces, is very rigid. A number of finiteness results lead up to a ri- gidity theorem for Heegard graphs. The book is intended for graduate students and researchers in low-dimensional topolo- gy as well as combinatorial theory. It is self-contained and requires only a basic knowledge of the theory of 3-manifolds


3-Manifolds

3-Manifolds

Author: John Hempel

Publisher: American Mathematical Society

Published: 2022-09-21

Total Pages: 209

ISBN-13: 1470471647

DOWNLOAD EBOOK

A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold … self-contained … one can learn the subject from it … would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. —Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The theme of this book is the role of the fundamental group in determining the topology of a given 3-manifold. The essential ideas and techniques are covered in the first part of the book: Heegaard splittings, connected sums, the loop and sphere theorems, incompressible surfaces, free groups, and so on. Along the way, many useful and insightful results are proved, usually in full detail. Later chapters address more advanced topics, including Waldhausen's theorem on a class of 3-manifolds that is completely determined by its fundamental group. The book concludes with a list of problems that were unsolved at the time of publication. Hempel's book remains an ideal text to learn about the world of 3-manifolds. The prerequisites are few and are typical of a beginning graduate student. Exercises occur throughout the text.


Handbook of Geometric Topology

Handbook of Geometric Topology

Author: R.B. Sher

Publisher: Elsevier

Published: 2001-12-20

Total Pages: 1145

ISBN-13: 0080532853

DOWNLOAD EBOOK

Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.