Particle Physics Reference Library

Particle Physics Reference Library

Author: Herwig Schopper

Publisher: Springer Nature

Published: 2020

Total Pages: 632

ISBN-13: 3030382079

DOWNLOAD EBOOK

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Flavor Physics and the TeV Scale

Flavor Physics and the TeV Scale

Author: George W. S. Hou

Publisher: Springer Science & Business Media

Published: 2009-05-20

Total Pages: 151

ISBN-13: 3540927913

DOWNLOAD EBOOK

The ?avor sector carries the largest number of parameters in the Standard Model of particle physics. With no evident symmetry principle behind its existence, it is not as well understood as the SU(3)×SU(2)×U(1) gauge interactions. Yet it tends to be underrated, sometimes even ignored, by the erudite. This is especially so on the verge of the LHC era, where the exploration of the physics of electroweak symmetry breaking at the high energy frontier would soon be the main thrust of the ?eld. Yet, the question of “Who ordered the muon?” by I. I. Rabi lingers. We do not understand why there is “family” (or generation) replication. That three generations are needed to have CP violation is a partial answer. We do not understand why there are only three generations, but Nature insists on (just about) only three active neutrinos. But then the CP violation with three generations fall far short of what is needed to generate the baryon asymmetry of the Universe. We do not understand why most fermions are so light on the weak symmetry breaking scale (v. e. v. ), yet the third-generation top quark is a v. e. v. scale particle. We do not understand why quarks and leptons look so different, in particular, why neutrinos are rather close to being massless, but then have (at least two) near maximal mixing angles. We shall not, however, concern ourselves with the neutrino sector. It has a life of its own.


The Anomalous Magnetic Moment of the Muon

The Anomalous Magnetic Moment of the Muon

Author: Fred Jegerlehner

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 433

ISBN-13: 3540726330

DOWNLOAD EBOOK

This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.


New Physics In B Decays

New Physics In B Decays

Author: Sheldon Stone

Publisher: World Scientific

Published: 2022-04-07

Total Pages: 232

ISBN-13: 9811251312

DOWNLOAD EBOOK

The Standard Model (SM) of particle physics has withstood thus far every attempt by experimentalists to show that it does not describe data. We discuss the SM in some detail, focusing on the mechanism of fermion mixing, which represents one of its most intriguing aspects. We discuss how this mechanism can be tested in b-quark decays, and how b decays can be used to extract information on physics beyond the SM. We review experimental techniques in b physics, focusing on recent results and highlighting future prospects. Particular attention is devoted to recent results from b decays into a hadron, a lepton and an anti-lepton, that show discrepancies with the SM predictions — the so-called B-physics anomalies — whose statistical significance has been increasing steadily. We discuss these experiments in a detailed manner, and also provide theoretical interpretation of these results in terms of physics beyond the SM.


Gauge Theory of Weak Decays

Gauge Theory of Weak Decays

Author: Andrzej J. Buras

Publisher: Cambridge University Press

Published: 2020-07-02

Total Pages: 739

ISBN-13: 1108882757

DOWNLOAD EBOOK

This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.


Advances in Jet Substructure at the LHC

Advances in Jet Substructure at the LHC

Author: Roman Kogler

Publisher: Springer Nature

Published: 2021-05-10

Total Pages: 287

ISBN-13: 3030728587

DOWNLOAD EBOOK

This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.


Selected Exercises in Particle and Nuclear Physics

Selected Exercises in Particle and Nuclear Physics

Author: Lorenzo Bianchini

Publisher: Springer

Published: 2017-11-25

Total Pages: 374

ISBN-13: 331970494X

DOWNLOAD EBOOK

This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experimental and theoretical particle physics and will enable students to evaluate their knowledge and preparedness for exams.


Studies of CP-Violation in Charmless Three-Body b-Hadron Decays

Studies of CP-Violation in Charmless Three-Body b-Hadron Decays

Author: Daniel O'Hanlon

Publisher: Springer

Published: 2018-11-02

Total Pages: 225

ISBN-13: 3030022064

DOWNLOAD EBOOK

This book highlights two essential analyses of data collected during the LHCb experiment, based on the Large Hadron Collider at CERN. The first comprises the first observation and studies of matter-antimatter asymmetries in two three-body b-baryon decays, paving the way for more precise measurements of the relatively unknown decay properties of b-baryon decays. The second is an analysis of a charged B meson decay to three charged pions, where previously large matter-antimatter asymmetries were observed in a model-independent analysis. Here a model of the decay amplitude is constructed using the unitarity-conserving ‘K-matrix’ model for the scalar contributions, so as to gain an understanding of how the previously observed matter-antimatter asymmetries arise; further, the model’s construction yields the most precise and comprehensive study of this decay mode to date.


Cosmoparticle Physics

Cosmoparticle Physics

Author: Maxim Yu Khlopov

Publisher: World Scientific

Published: 1999

Total Pages: 588

ISBN-13: 9789810231880

DOWNLOAD EBOOK

Since the 1980s the cross-disciplinary, multidimensional field of links between cosmology and particle physics has been widely recognised by theorists, studying cosmology, particle and nuclear physics, gravity, as well as by astrophysicists, astronomers, space physicists, experimental particle and nuclear physicists, mathematicians and engineers.The relationship between cosmology and particle physics is now one of the important topics of discussion at any scientific meeting both on astrophysics and high energy physics.Cosmoparticle physics is the result of the mutual relationship between cosmology and particle physics in their search for physical mechanisms of inflation, baryosynthesis, nonbaryonic dark matter, and for fundamental unity of the natural forces underlying them. The set of nontrivial links between cosmological consequences of particle models and the astrophysical data on matter and radiation in the modern universe maintains cosmoarcheology, testing self-consistently particular predictions of particle models on the base of cosmological scenarios, following from them. Complex analysis of all the indirect cosmological, astrophysical and microphysical phenomena makes cosmoparticle physics the science of the world and renders quantitatively definite the correspondence between its micro- and macroscopic structure.This book outlines the principal ideas of the modern particle theory and cosmology, their mutual relationship and the nontrivial correspondence of their physical and astrophysical effects.