Scientific Basis for Nuclear Waste Management

Scientific Basis for Nuclear Waste Management

Author: Clyde J. Northrup

Publisher: Springer

Published: 2013-12-19

Total Pages: 932

ISBN-13: 1468438395

DOWNLOAD EBOOK

The Symposium on the Scientific Basis for Nuclear Waste Manage ment was held in the fall of 1979 in Boston, Massachusetts and was one of a number of symposia included in the Annual Meeting of the Materials Research Society. The thrust of this annual Symposium is unique in the area of waste management. Recognizing that this is an area of great complexity which requires contributions from scien tists with many different backgrounds some of which are not normally associated with nuclear energy, the Materials Research Society pro vides a forum for discussions of a wide range of materials behavior and transport phenomena. As can be seen from the list of references in each paper, the authors draw heavily on contributions associated with professional societies in addition to the Materials Research Society, and this annual meeting encourages the cross-fertilization between disciplines that are essential to an adequate treatment of the problems associated with nuclear waste management. The proceed ings of the first Symposium that was held in 1978 was designated as Volume 1 in this series. The third Symposium is scheduled for 1980. The scope of the 1979 Symposium was guided by the Steering Committee: R. L. Schwoebel, Sandia Laboratories, USA (Chairman) W. Carbiener, Battelle Memorial Institute, Columbus, USA D. Ferguson, Oak Ridge National Laboratory, USA W. Heimerl, DWK, Mol, Belgium W. Lutze, Hahn Meitner Institut, Berlin, W. Germany J. D. Mather, Institute of Geological Sciences, Harwell, UK G. Oertel, Department of Energy, USA R.


Uhlig's Corrosion Handbook

Uhlig's Corrosion Handbook

Author: R. Winston Revie

Publisher: John Wiley & Sons

Published: 2011-04-12

Total Pages: 1299

ISBN-13: 0470080329

DOWNLOAD EBOOK

This book serves as a reference for engineers, scientists, and students concerned with the use of materials in applications where reliability and resistance to corrosion are important. It updates the coverage of its predecessor, including coverage of: corrosion rates of steel in major river systems and atmospheric corrosion rates, the corrosion behavior of materials such as weathering steels and newer stainless alloys, and the corrosion behavior and engineering approaches to corrosion control for nonmetallic materials. New chapters include: high-temperature oxidation of metals and alloys, nanomaterials, and dental materials, anodic protection. Also featured are chapters dealing with standards for corrosion testing, microbiological corrosion, and electrochemical noise.


Materials for Nuclear Waste Immobilization

Materials for Nuclear Waste Immobilization

Author: Michael I. Ojovan

Publisher: MDPI

Published: 2020-01-09

Total Pages: 220

ISBN-13: 3039218468

DOWNLOAD EBOOK

The book outlines recent advances in nuclear wasteform materials including glasses, ceramics and cements and spent nuclear fuel. It focuses on durability aspects and contains data on performance of nuclear wasteforms as well as expected behavior in a disposal environment.


Crystalline Materials for Actinide Immobilisation

Crystalline Materials for Actinide Immobilisation

Author: Boris E. Burakov

Publisher: World Scientific

Published: 2011

Total Pages: 215

ISBN-13: 1848164181

DOWNLOAD EBOOK

This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuclear fuel to burn excess Pu, chemically inert sources of irradiation for use in unmanned space vehicles or producing electricity for microelectronic devices, and nuclear waste disposal. Long-lived -emitting actinides such as Pu, Np, Am and Cm are currently of serious concern has a result of increased worldwide growth in the nuclear industry. Actinide-bearing wastes have also accumulated in different countries as a result of nuclear weapons production. Excess weapon and civil Pu from commercial spent fuel is waiting for environmentally-safe immobilisation. As actinides are chemical elements with unique features, they could be beneficially used in different areas of human life including medicine although currently there is no appropriate balance between safe actinide disposal and use. Both use and disposal of actinides require their immobilisation in a durable host material. The choice of an optimal actinide immobilisation route is often a great challenge for specialists. There is a wealth of information about actinide properties in many publications although little is published to summarise the currently accepted approaches and practices on actinide immobilisation. This book intends to provide such information based on the authors' experience and studies in nuclear material management and actinide immobilisation.


Waste Forms Technology and Performance

Waste Forms Technology and Performance

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-05

Total Pages: 308

ISBN-13: 0309187338

DOWNLOAD EBOOK

The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.


Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste

Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste

Author: Michael J Apted

Publisher: Elsevier

Published: 2010-07-27

Total Pages: 789

ISBN-13: 1845699785

DOWNLOAD EBOOK

Geological disposal has been internationally adopted as the most effective approach to assure the long-term, safe disposition of the used nuclear fuels and radioactive waste materials produced from nuclear power generation, nuclear weapons programs, medical, treatments, and industrial applications. Geological repository systems take advantage of natural geological barriers augmented with engineered barrier systems to isolate these radioactive materials from the environment and from future populations.Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches directly related to the implementation of geological repository systems.Part one introduces geological disposal, including multiple-barrier geological repositories, as well as reviewing the impact of nuclear fuel recycling practices and underground research laboratory activities on the development of disposal concepts. Part two reviews geological repository siting in different host rocks, including long-term stability analysis and radionuclide transport modelling. Reviews of the range of engineered barrier systems, including waste immobilisation technologies, container materials, low pH concretes, clay-based buffer and backfill materials, and barrier performance are presented in Part three. Part four examines total system performance assessment and safety analyses for deep geological and near-surface disposal, with coverage of uncertainty analysis, use of expert judgement for decision making, and development and use of knowledge management systems. Finally, Part five covers regulatory and social approaches for the establishment of geological disposal programs, from the development of radiation standards and risk-informed, performance-based regulations, to environmental monitoring and social engagement in the siting and operation of repositories.With its distinguished international team of contributors, Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste is a standard reference for all nuclear waste management and geological repository professionals and researchers. - Critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches related to the implementation of geological repository systems - Chapters introduce geological disposal and review the development of disposal concepts - Examines long-term stability analysis, the range of engineered barrier systems and barrier performance