Water in Organic Synthesis is essential for the organic chemist in helping gain a thorough appreciation of the latest and most reliable available methods for using water in organic synthesis. It illustrates how water can often be a viable and green solvent in the laboratory and provides a detailed introduction to the subject: background information, evaluated methods, practical applications, industrial applications, special techniques, and an overview of the latest trends. The reference work also helps in inspiring chemists worldwide to find new approaches and techniques for the application of water in organic synthesis. Comprehensive overview of a rapidly progressing field Critical review of aqueous reactions by 47 experts Covering almost all types of organic reactions Including special techniques with water and industrial applications Emphasis on environmental aspects
The use of water as a medium for promoting organic reactions has been rather neglected in the development of organic synthesis, despite the fact that it is the solvent in which almost all biochemical processes take place. Chemists have only recently started to appreciate the enormous potential water has to offer in the development of new synthetic reactions and strategies, where it can offer benefits in both unique chemistry and reduced environmental impact. In this new book, the editor, well known for his contribution to the development of water as a useful medium in synthetic organic chemistry, has assembled an international team of authors, themselves at the forefront of research into the use of the unique properties of water carrying out organic transformations, to provide a timely and concise overview of current research. By focusing on the practical use of water in synthetic organic chemistry, and with the concern for the use of solvents in organic chemistry, professional chemists, particularly those involved in industrial research and development, will find this book an essential guide to the current state of the art, and a useful starting point in their own research. Academic chemists, including postgraduate and advanced undergraduate students, will find this book an invaluable guide to this exciting and important area of chemistry.
Written by highly renowned and experienced authors, this is the only reference on the application of solvents as reagents. Clearly structured, the text describes various methods for the activation and reaction of these small molecules, highlighting the synthetic opportunities as well as process-oriented advantages. To this end, all relevant types of solvents are covered separately and emphasized with numerous synthetic examples, while taking care to explain applications so as to avoid undesired side reactions. The result is a unique resource for every synthetic chemist and reaction engineer in industry and academia working on the methodical optimization of synthetic transformations.
The widespread use of organoboron compounds justifies the efforts devoted to their synthesis, as well as toward developing an understanding of their reactivity. The nature of the mono- or diboron species is of paramount importance in determining the reversible covalent binding properties of the boron atom with both nucleophiles and electrophiles. By wedding the rich chemical potential of organoboron compounds to the ubiquity of organic scaffolds, advanced borylation reactions have the potential to open unprecedented synthetic alternatives, and new knowledge in the field should encourage chemists to use organoboron compounds. In this volume, the main objective is to provide a collection of the most useful, practical, and reliable methods, reported mainly within the last decade, for boron activation and boron reactivity. The volume covers the main concepts of organoboron compounds and includes experimental procedures, enabling newcomers to the field the instant and reliable application of the new tools in synthesis. Rather than aiming for a comprehensive coverage, the most advanced solutions for challenging transformations are introduced. To this end, a team of pioneers and leaders in the field have been assembled who discuss both the practical and conceptual aspects of this rapidly growing field.
Recent years have seen huge growth in the area of sustainable chemistry. In order to meet the chemical needs of the global population whilst minimising impacts on health and the environment it is essential to keep reconsidering and improving synthetic processes. Sustainable Organic Synthesis is a comprehensive collection of contributions, provided by specialists in Green Chemistry, covering topics ranging from catalytic approaches to benign and alternative reaction media, and innovative and more efficient technologies.
Organic Synthesis Using Biocatalysis provides a concise background on the application of biocatalysis for the synthesis of organic compounds, including the important biocatalytic reactions and application of biocatalysis for the synthesis of organic compounds in pharmaceutical and non-pharmaceutical areas. The book provides recipes for carrying out various biocatalytic reactions, helping both newcomers and non-experts use these methodologies. It is written by experts in their fields, and provides both a current status and future prospects of biocatalysis in the synthesis of organic molecules. - Provides a concise background of the application of biocatalysis for the synthesis of organic compounds - Expert contributors present recipes for carrying out biocatalytic reactions, including subject worthy discussions on biocatalysis in organic synthesis, biocatalysis for selective organic transformation, enzymes as catalysis for organic synthesis, biocatalysis in Industry, including pharmaceuticals, and more - Contains detailed, separate chapters that describe the application of biocatalysis
Organic Synthesis: Today and Tomorrow covers the proceedings of the Third International Union of Pure and Applied Chemistry (IUPAC) Symposium on Organic Synthesis. The book covers topics that tackle relevant issues about organic chemistry. Comprised of 27 chapters, the book covers lectures that tackle topics pertaining organic chemistry. These topics include useful synthetic methods for general application; development of chemistry concepts for use in construction of molecular sub-assemblies; and interplay of synthetic methodology and the total synthesis of organic compounds. The book will be of great interest to scientists, such as biochemists who are concerned with the advances in organic chemistry.
The field of dual catalysis has developed rapidly over the last decade, and these volumes define its impact on organic synthesis. The most important, basic concepts of synergistic, dual catalytic cycles are introduced, providing newcomers to the field with reliable information on this new approach to facilitating the synthesis of organic molecules. Background information and reliable procedures for challenging transformations in synthesis are presented, applying the concept of cooperative dual catalysis as a means of increasing molecular complexity in the most efficient manner. The most useful, practical, and reliable methods for dual catalysis combining metal catalysts, organocatalysts, photocatalysts, and biocatalysts are presented.
Kurti and Czako have produced an indispensable tool for specialists and non-specialists in organic chemistry. This innovative reference work includes 250 organic reactions and their strategic use in the synthesis of complex natural and unnatural products. Reactions are thoroughly discussed in a convenient, two-page layout--using full color. Its comprehensive coverage, superb organization, quality of presentation, and wealth of references, make this a necessity for every organic chemist. - The first reference work on named reactions to present colored schemes for easier understanding - 250 frequently used named reactions are presented in a convenient two-page layout with numerous examples - An opening list of abbreviations includes both structures and chemical names - Contains more than 10,000 references grouped by seminal papers, reviews, modifications, and theoretical works - Appendices list reactions in order of discovery, group by contemporary usage, and provide additional study tools - Extensive index quickly locates information using words found in text and drawings
Samarium diiodide is one of the most important reducing agents available to synthetic organic chemists. The lanthanide(II) reagent acts by single-electron transfer to organic substrates leading to the formation of both radical and/or anionic intermediates. The power of the reagent arises from its versatility - samarium diiodide can be used in processes ranging from functional group conversions to elaborate carbon-carbon bond-forming cyclization sequences that result in a dramatic increase in molecular complexity. In addition, reactions involving samarium diiodide often show high stereoselectivity as samarium ions can coordinate to Lewis basic sites on substrates and can direct the stereochemical course of reactions. The ability to fine-tune the reactivity of the reagent by the use of additives and co-solvents is an additional, attractive feature. Although samarium diiodide is used extensively by organic chemists, there is still a widely held view that the reagent can be difficult to prepare and use. In addition, samarium diiodide can mediate such a wide variety of organic chemistry that potential new users are often overawed by the extensive primary literature on the reagent. The objective of this book is to provide a concise, practical guide to the reagent. Rather than being a comprehensive review of the chemistry of samarium diiodide, this user-friendly book adopts an "an all you need to know" approach to the topic. The international authors are well-known for their work with the reagent and their expertise covers current developments in new reactivity and selectivity, applications in target synthesis, co-solvent and additive effects, coordination chemistry and mechanism. The book includes the best methods for preparing and handling the reagent, how solvents, co-solvents and additives alter reactivity, the basic mechanisms of reactions, common transformations using the reagent, and emerging areas in samarium diiodide chemistry. The authors have distilled the extensive primary literature to allow the reader to quickly grasp an understanding of the reagent and its utility. The illustrative practical procedures help the reader to prepare and use the reagent in the laboratory while references from the recent literature allow readers to pursue their interest in the popular reagent. The book also contains many illustrations and chemical schemes.