A guide to science and technology resources, providing practices and tools in library and information science, as well as a historical perspective on science and technology resources. It begins with an overview of the nature of sci-tech literature, and the information-seeking behavior of scientists and engineers.
Successfully leverage technology to enhance classroom practices with this practical resource. The authors demonstrate the importance of educational technology, which is quickly becoming an essential component in effective teaching. Included are over 100 organized classroom strategies, vignettes that show each section’s strategies in action, and a glossary of classroom-relevant technology terms. Key research is summarized and translated into classroom recommendations.
Teaching Lab Science Courses Online is a practical resource for educators developing and teaching fully online lab science courses. First, it provides guidance for using learning management systems and other web 2.0 technologies such as video presentations, discussion boards, Google apps, Skype, video/web conferencing, and social media networking. Moreover, it offers advice for giving students the hands-on “wet laboratory” experience they need to learn science effectively, including the implications of implementing various lab experiences such as computer simulations, kitchen labs, and commercially assembled at-home lab kits. Finally, the book reveals how to get administrative and faculty buy-in for teaching science online and shows how to negotiate internal politics and assess the budget implications of online science instruction.
This work explores the relationship between science and technology in the school curriculum. Examples of science as a resource for technological capability are drawn from both "real world technology" and from "school technology."
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
Science and Technology explores questions around the central concepts of STEM fields: How do we interact with science and technology on a daily basis? Is technology surpassing biology? What are the ethics of science and technology? Does technology rule our economy? How is the internet changing society? Readings by biologists, climate scientists, journalists, ethicists, novelists, engineers, and others take up these questions and more. Questions and assignments for each selection provide a range of activities for students. The Bedford Spotlight Reader Series is an exciting line of single-theme readers, each reflecting Bedford’s trademark care and quality. An editorial board of a dozen compositionists at schools with courses focusing on specific themes assists in the development of the series. Each reader collects thoughtfully chosen selections sufficient for an entire writing course—about 35 pieces—to allow instructors to provide carefully developed, high-quality instruction at an affordable price. Bedford Spotlight Readers are designed to help students from all majors make sustained inquiries from multiple perspectives, opening up topics such as borders, food, gender, happiness, humor, language, monsters, music, subcultures, and sustainability, to critical analysis. The readers are flexibly arranged in thematic chapters, with each chapter focusing in depth on a different facet of the central topic. The instructor resource tab of each reader’s catalog page includes instructor support with sample syllabi and additional teaching resources.
Every industrialized country is concerned with maintaining an adequate supply of individuals interested in careers in science and technology, yet little is known about these efforts outside national borders. This book represents the proceedings of an international conference on Trends in Science and Technology Careers, held in Brussels in 1993. Organized at the behest of OSEP and the OIA Committee on International Organizations and Programs, in cooperation with the European Commission (DG XII) and in response to a resolution of the International Council of Scientific Unions, the conference identified international data on career trends, assessed the research base engaged in studying science and technology careers, and identified ways in which international organizations could promote greater interest in science and technology human resource development. The conference laid the groundwork for continuing international discussions about the best ways to study and promote careers in science and technology and national dialogues about the ways to integrate this knowledge into human resources policies.
For decades, politicians, businessmen and other leaders have been concerned with the quality of education, including early childhood education, in the United States. While more than 50% of the children between the ages of three and five are enrolled in preschool and kindergarten programs in the United States, no state, federal, or national standards exist for science or technology education in preschool or kindergarten programs. Knowledge about science and technology is an important requirement for all in contemporary society. An increasing number of professions require the use of scientific concepts and technological skills and society as a whole depends on scientific knowledge. Scientific and technological knowledge should be a part of every individual’s education. There are many ways to enhance young children’s scientific thinking and problem-solving skills as well as their technological abilities. The purpose of this volume is to present a critical analysis of reviews of research on science and technology education in early childhood education. The first part of the volume includes contributions by leading scholars in science, while the second part includes contributions by leading scholars in technology.