Scheduling: Control-Based Theory and Polynomial-Time Algorithms

Scheduling: Control-Based Theory and Polynomial-Time Algorithms

Author: K. Kogan

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 399

ISBN-13: 1461546753

DOWNLOAD EBOOK

This book presents a first attempt to systematically collect, classify and solve various continuous-time scheduling problems. The classes of problems distinguish scheduling by the number of machines and products, production constraints and performance measures. Although such classes are usually considered to be a prerogative of only combinatorial scheduling literature, the scheduling methodology suggested in this book is based on two mathematical tools - optimal control and combinatorics. Generally considered as belonging to two totally different areas of research and application, these seemingly irreconcilable tools can be integrated in a unique solution approach with the advantages of both. This new approach provides the possibility of developing effective polynomial-time algorithms to solve the generic scheduling problems. This book is aimed at a student audience - final year undergraduates as well as master and Ph.D. students, primarily in Operations Research, Management, Industrial Engineering and Control Systems. Indeed, some of the material in the book has formed part of the content of undergraduate and graduate courses taught at the Industrial Engineering Department of Tel-Aviv University, the Logistics Department of Bar-Ilan University and the Technology Management Department of Rolon Center for Technological Education, Israel. The book is also useful for practicing engineers interested in planning, scheduling and optimization methods. Since the book addresses the theory and design of computer-based scheduling algorithms, applied mathematicians and computer software specialists engaged in developing scheduling software for industrial engineering and management problems will find that the methods developed here can be embedded very efficiently in large applications.


Scheduling: Control-Based Theory and Polynomial-Time Algorithms

Scheduling: Control-Based Theory and Polynomial-Time Algorithms

Author: K. Kogan

Publisher: Springer

Published: 2000-10-31

Total Pages: 397

ISBN-13: 9780792364863

DOWNLOAD EBOOK

This book presents a first attempt to systematically collect, classify and solve various continuous-time scheduling problems. The classes of problems distinguish scheduling by the number of machines and products, production constraints and performance measures. Although such classes are usually considered to be a prerogative of only combinatorial scheduling literature, the scheduling methodology suggested in this book is based on two mathematical tools - optimal control and combinatorics. Generally considered as belonging to two totally different areas of research and application, these seemingly irreconcilable tools can be integrated in a unique solution approach with the advantages of both. This new approach provides the possibility of developing effective polynomial-time algorithms to solve the generic scheduling problems. This book is aimed at a student audience - final year undergraduates as well as master and Ph.D. students, primarily in Operations Research, Management, Industrial Engineering and Control Systems. Indeed, some of the material in the book has formed part of the content of undergraduate and graduate courses taught at the Industrial Engineering Department of Tel-Aviv University, the Logistics Department of Bar-Ilan University and the Technology Management Department of Rolon Center for Technological Education, Israel. The book is also useful for practicing engineers interested in planning, scheduling and optimization methods. Since the book addresses the theory and design of computer-based scheduling algorithms, applied mathematicians and computer software specialists engaged in developing scheduling software for industrial engineering and management problems will find that the methods developed here can be embedded very efficiently in large applications.


Separable Programming

Separable Programming

Author: S.M. Stefanov

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 323

ISBN-13: 1475734174

DOWNLOAD EBOOK

In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming. Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well. Audience: Advanced undergraduate and graduate students, mathematical programming/ operations research specialists.


Optimization Theory

Optimization Theory

Author: F. Giannessi

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 280

ISBN-13: 1461302951

DOWNLOAD EBOOK

This volume contains refereed papers based on the lectures presented at the XIV International Conference on Mathematical Programming held at Matrahaza, Hungary, between 27-31 March 1999. This conference was organized by the Laboratory of Operations Research and Deci sion Systems at the Computer and Automation Institute, Hungarian Academy of Sciences. The editors hope this volume will contribute to the theory and applications of mathematical programming. As a tradition of these events, the main purpose of the confer ence was to review and discuss recent advances and promising research trends concerning theory, algorithms and applications in different fields of Optimization Theory and related areas such as Convex Analysis, Complementarity Systems and Variational Inequalities. The conference is traditionally held in the Matra Mountains, and housed by the resort house of the Hungarian Academy of Sciences. This was the 14th event of the long lasting series of conferences started in 1973. The organizers wish to express their thanks to the authors for their contributions in this volume, and the anonymous referees for their valu able comments. Special thanks are directed to our sponsors, the Hun garian Academy of Sciences, the National Committee for Technological Development, the Hungarian National Science Foundation, and last but not least, the Hungarian Operational Research Society. We would like to thank John Martindale from Kluwer Academic Publishers for helping us produce this volume, Eva Nora Nagy for cor rections and proof-readings, and Peter Dombi for his excellent work on typesetting and editing the manuscript.


Optimization Methods and Applications

Optimization Methods and Applications

Author: Xiao-qi Yang

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 439

ISBN-13: 147573333X

DOWNLOAD EBOOK

This edited book is dedicated to Professor N. U. Ahmed, a leading scholar and a renowned researcher in optimal control and optimization on the occasion of his retirement from the Department of Electrical Engineering at University of Ottawa in 1999. The contributions of this volume are in the areas of optimal control, non linear optimization and optimization applications. They are mainly the im proved and expanded versions of the papers selected from those presented in two special sessions of two international conferences. The first special session is Optimization Methods, which was organized by K. L. Teo and X. Q. Yang for the International Conference on Optimization and Variational Inequality, the City University of Hong Kong, Hong Kong, 1998. The other one is Optimal Control, which was organized byK. ~Teo and L. Caccetta for the Dynamic Control Congress, Ottawa, 1999. This volume is divided into three parts: Optimal Control; Optimization Methods; and Applications. The Optimal Control part is concerned with com putational methods, modeling and nonlinear systems. Three computational methods for solving optimal control problems are presented: (i) a regularization method for computing ill-conditioned optimal control problems, (ii) penalty function methods that appropriately handle final state equality constraints, and (iii) a multilevel optimization approach for the numerical solution of opti mal control problems. In the fourth paper, the worst-case optimal regulation involving linear time varying systems is formulated as a minimax optimal con trol problem.


Generalized Optimal Control of Linear Systems with Distributed Parameters

Generalized Optimal Control of Linear Systems with Distributed Parameters

Author: S.I. Lyashko

Publisher: Springer Science & Business Media

Published: 2005-12-27

Total Pages: 467

ISBN-13: 0306475715

DOWNLOAD EBOOK

The author of this book made an attempt to create the general theory of optimization of linear systems (both distributed and lumped) with a singular control. The book touches upon a wide range of issues such as solvability of boundary values problems for partial differential equations with generalized right-hand sides, the existence of optimal controls, the necessary conditions of optimality, the controllability of systems, numerical methods of approximation of generalized solutions of initial boundary value problems with generalized data, and numerical methods for approximation of optimal controls. In particular, the problems of optimization of linear systems with lumped controls (pulse, point, pointwise, mobile and so on) are investigated in detail.


Stable Parametric Programming

Stable Parametric Programming

Author: S. Zlobec

Publisher: Springer Science & Business Media

Published: 2001-08-31

Total Pages: 378

ISBN-13: 9780792371397

DOWNLOAD EBOOK

Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.


Aspects of Semidefinite Programming

Aspects of Semidefinite Programming

Author: E. de Klerk

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 287

ISBN-13: 0306478196

DOWNLOAD EBOOK

Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming. In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson. Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.


Transportation Planning

Transportation Planning

Author: Michael Patriksson

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 253

ISBN-13: 0306482207

DOWNLOAD EBOOK

This book collects selected presentations of the Meeting of the EURO Working Group on Transportation, which took place at the Department of Ma- ematics at Chalmers University of Technology, Göteborg (or, Gothenburg), Sweden, September 9–11, 1998. [The EURO Working Group on Transpor- tion was founded at the end of the 7th EURO Summer Institute on Urban Traffic Management, which took place in Cetraro, Italy, June 21–July, 1991. There were around 30 founding members of the Working Group, a number which now has grown to around 150. Meetings since then include Paris (1993), Barcelona (1994), and Newcastle (1996). ] About 100 participants were present, enjoying healthy rain and a memorable conference dinner in the Feskekôrka. The total number of presentations at the conference was about 60, coming from quite diverse areas within the field of operations research in transportation, and covering all modes of transport: Deterministic traffic equilibrium models (6 papers) Stochastic traffic equilibrium models (5 papers) Combined traffic models (3 papers) Dynamic traffic models (7 papers) Simulation models (4 papers) Origin–destination matrix estimation (2 papers) Urban public transport models (8 papers) Aircraft scheduling (1 paper) Ship routing (2 papers) Railway planning and scheduling (6 papers) Vehicle routing (3 papers) Traffic management (3 papers) Signal control models (3 papers) Transportation systems analysis (5 papers) ix x TRANSPORTATION PLANNING Among these papers, 14 were eventually selected to be included in this volume.


Intelligent Control Systems

Intelligent Control Systems

Author: Gábor Szederkényi

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 312

ISBN-13: 0306480816

DOWNLOAD EBOOK

Intelligent control is a rapidly developing, complex and challenging field with great practical importance and potential. Because of the rapidly developing and interdisciplinary nature of the subject, there are only a few edited volumes consisting of research papers on intelligent control systems but little is known and published about the fundamentals and the general know-how in designing, implementing and operating intelligent control systems. Intelligent control system emerged from artificial intelligence and computer controlled systems as an interdisciplinary field. Therefore the book summarizes the fundamentals of knowledge representation, reasoning, expert systems and real-time control systems and then discusses the design, implementation verification and operation of real-time expert systems using G2 as an example. Special tools and techniques applied in intelligent control are also described including qualitative modelling, Petri nets and fuzzy controllers. The material is illlustrated with simple examples taken from the field of intelligent process control.