Electron Scattering

Electron Scattering

Author: Colm T. Whelan

Publisher: Springer Science & Business Media

Published: 2006-01-17

Total Pages: 342

ISBN-13: 0387275673

DOWNLOAD EBOOK

There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.


An Assessment of U.S.-Based Electron-Ion Collider Science

An Assessment of U.S.-Based Electron-Ion Collider Science

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-10-13

Total Pages: 153

ISBN-13: 0309478561

DOWNLOAD EBOOK

Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1999-03-31

Total Pages: 222

ISBN-13: 0309173663

DOWNLOAD EBOOK

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.


Electron Scattering for Nuclear and Nucleon Structure

Electron Scattering for Nuclear and Nucleon Structure

Author: John Dirk Walecka

Publisher: Cambridge University Press

Published: 2001-11-15

Total Pages: 381

ISBN-13: 1139429973

DOWNLOAD EBOOK

Scattering of high-energy electrons from nuclear and nucleon targets essentially provides a microscope for examining the structure of these tiny objects. This 2001 book examines the motivation for electron scattering, develops the theoretical analysis of the process and summarises present experimental capabilities. Suitable for advanced undergraduates, graduates and researchers.


High Energy Astrophysics

High Energy Astrophysics

Author: Malcolm S. Longair

Publisher: Cambridge University Press

Published: 2011-02-03

Total Pages: 885

ISBN-13: 1139494546

DOWNLOAD EBOOK

Providing students with an in-depth account of the astrophysics of high energy phenomena in the Universe, the third edition of this well-established textbook is ideal for advanced undergraduate and beginning graduate courses in high energy astrophysics. Building on the concepts and techniques taught in standard undergraduate courses, this textbook provides the astronomical and astrophysical background for students to explore more advanced topics. Special emphasis is given to the underlying physical principles of high energy astrophysics, helping students understand the essential physics. The third edition has been completely rewritten, consolidating the previous editions into one volume. It covers the most recent discoveries in areas such as gamma-ray bursts, ultra-high energy cosmic rays and ultra-high energy gamma rays. The topics have been rearranged and streamlined to make them more applicable to a wide range of different astrophysical problems.


Advances in Nuclear Physics

Advances in Nuclear Physics

Author: J.W. Negele

Publisher: Springer

Published: 1981-09-30

Total Pages: 272

ISBN-13: 9780306407086

DOWNLOAD EBOOK

Recent advances in three areas of nuclear physics are addressed in this volume. The theory of the ground state of matter is fundamental to many areas of physics and, in particular, is crucial to a microscopic understanding of nuclear physics. All conclusions concerning the relevance of me sonic, nu clear isobar, and quark degrees of freedom to nuclear structure are nec essarily subject to limitations in one's ability to accurately solve the nuclear many-body problem with static two-body interactions. Thus, it is particularly significant that in recent years great advances have been made in the vari ational theory of the ground state of zero-temperature infinite matter. The first article presents a pedagogical treatment of these advances and surveys computational results for a variety of model and physical systems. The second article reviews recent progress in determining nuclear tran sition densities from inelastic electron scattering. In the past, detailed knowl edge of the charge distributions in nuclear ground states obtained from inverting elastic electron scattering data has proven extremely valuable.


Quark--Gluon Plasma 3

Quark--Gluon Plasma 3

Author: Rudolph C. Hwa

Publisher: World Scientific

Published: 2004

Total Pages: 786

ISBN-13: 9812795537

DOWNLOAD EBOOK

Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.


Nuclear and Particle Physics

Nuclear and Particle Physics

Author: C. Amsler

Publisher:

Published: 2015

Total Pages: 0

ISBN-13: 9780750311403

DOWNLOAD EBOOK

This book provides an introductory course on Nuclear and Particle physics for undergraduate and early-graduate students, which the author has taught for several years at the University of Zurich. It contains fundamentals on both nuclear physics and particle physics. Emphasis is given to the discovery and history of developments in the field, and is experimentally/phenomenologically oriented. It contains detailed derivations of formulae such as 2- 3 body phase space, the Weinberg-Salam model, and neutrino scattering. Originally published in German as 'Kern- und Teilchenphysik', several sections have been added to this new English version to cover very modern topics, including updates on neutrinos, the Higgs boson, the top quark and bottom quark physics. - Prové de l'editor.


Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics

Author: Stefaan Tavernier

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 316

ISBN-13: 3642008291

DOWNLOAD EBOOK

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.