This volume of proceedings consists of the papers presented during the 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Lefkada, Greece, on 27-29 September 2007. The book contains papers on scattering theory and biomedical engineering - two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. In addition, some papers focus more on applied mathematics, which is the solid ground for development and innovative research in scattering and biomedical engineering.
This volume of proceedings consists of the papers presented during the 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Lefkada, Greece, on 27-29 September 2007.The book contains papers on scattering theory and biomedical engineering ? two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. In addition, some papers focus more on applied mathematics, which is the solid ground for development and innovative research in scattering and biomedical engineering.
This volume of proceedings consists of the papers presented during the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Patras, Greece, on 9ndash;11 October 2009. The book contains papers on scattering theory and biomedical engineering - two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. in addition, some papers focus more on applied mathematics, which provides a solid ground for development and innovative research in scattering and biomedical engineering.
This book addresses issues of scattering theory and biomedical engineering, as well as methodological approaches and tools from related scientific areas such as applied mathematics, mechanics, numerical analysis, and signal and image processing.
This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.
The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.
Ultrasonic Scattering in Biological Tissues contains 14 chapters written by world-renowned authorities who describe current work related to theoretical and experimental aspects of ultrasonic scattering phenomenon in biological tissues. Introductory material regarding ultrasonic scattering in biological tissues is presented, followed by discussions on theoretical treatments, experimental approaches, in vitro results on selective tissues, in vivo results on various tissues, and the current status of quantitative backscatter imaging. Ultrasonic Scattering in Biological Tissues will be an excellent reference for biomedical engineers, ultrasound specialists, biophysicists, and radiology researchers.
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
This volume deals with scattering theory, applied mathematics, modeling and biomedical engineering. Most of the papers describe mathematical methods, numerical solutions and models for well-known problems in those areas.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)