Sampling

Sampling

Author: Sharon L. Lohr

Publisher: CRC Press

Published: 2019-04-08

Total Pages: 923

ISBN-13: 1000022544

DOWNLOAD EBOOK

This edition is a reprint of the second edition published by Cengage Learning, Inc. Reprinted with permission. What is the unemployment rate? How many adults have high blood pressure? What is the total area of land planted with soybeans? Sampling: Design and Analysis tells you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches sampling using real data sets from social sciences, public opinion research, medicine, public health, economics, agriculture, ecology, and other fields. The book is accessible to students from a wide range of statistical backgrounds. By appropriate choice of sections, it can be used for a graduate class for statistics students or for a class with students from business, sociology, psychology, or biology. Readers should be familiar with concepts from an introductory statistics class including linear regression; optional sections contain the statistical theory, for readers who have studied mathematical statistics. Distinctive features include: More than 450 exercises. In each chapter, Introductory Exercises develop skills, Working with Data Exercises give practice with data from surveys, Working with Theory Exercises allow students to investigate statistical properties of estimators, and Projects and Activities Exercises integrate concepts. A solutions manual is available. An emphasis on survey design. Coverage of simple random, stratified, and cluster sampling; ratio estimation; constructing survey weights; jackknife and bootstrap; nonresponse; chi-squared tests and regression analysis. Graphing data from surveys. Computer code using SAS® software. Online supplements containing data sets, computer programs, and additional material. Sharon Lohr, the author of Measuring Crime: Behind the Statistics, has published widely about survey sampling and statistical methods for education, public policy, law, and crime. She has been recognized as Fellow of the American Statistical Association, elected member of the International Statistical Institute, and recipient of the Gertrude M. Cox Statistics Award and the Deming Lecturer Award. Formerly Dean’s Distinguished Professor of Statistics at Arizona State University and a Vice President at Westat, she is now a freelance statistical consultant and writer. Visit her website at www.sharonlohr.com.


An Introduction to Model-Based Survey Sampling with Applications

An Introduction to Model-Based Survey Sampling with Applications

Author: Ray Chambers

Publisher: OUP Oxford

Published: 2012-01-12

Total Pages: 280

ISBN-13: 0191627909

DOWNLOAD EBOOK

This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.


Social Science Research

Social Science Research

Author: Anol Bhattacherjee

Publisher: CreateSpace

Published: 2012-04-01

Total Pages: 156

ISBN-13: 9781475146127

DOWNLOAD EBOOK

This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.


Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition

Author: Andrew Gelman

Publisher: CRC Press

Published: 2013-11-01

Total Pages: 677

ISBN-13: 1439840954

DOWNLOAD EBOOK

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.


Statistical Power Analysis for the Behavioral Sciences

Statistical Power Analysis for the Behavioral Sciences

Author: Jacob Cohen

Publisher: Routledge

Published: 2013-05-13

Total Pages: 625

ISBN-13: 1134742770

DOWNLOAD EBOOK

Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.


Statistical Techniques for Sampling and Monitoring Natural Resources

Statistical Techniques for Sampling and Monitoring Natural Resources

Author: Hans T. Schreuder

Publisher:

Published: 2004-12-01

Total Pages: 111

ISBN-13: 9780756745387

DOWNLOAD EBOOK

This Forest Service report presents the statistical theory of inventory & monitoring from a probabilistic point of view. It starts with the basics & shows the interrelationships between designs & estimators illustrating the methods with a small artificial population as well as with a mapped realistic population. For such applications, useful open source software is given in Appendix 4. Various sources of ancillary information are described & applications of the sampling strategies are discussed. Classical & bootstrap variance estimators are also discussed. Numerous problems with solutions are given, often based on the experiences of the authors. Key additional references are cited. Illustrated.


Simulating Data with SAS

Simulating Data with SAS

Author: Rick Wicklin

Publisher: SAS Institute

Published: 2013

Total Pages: 363

ISBN-13: 1612903320

DOWNLOAD EBOOK

Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.


Probability and Statistics

Probability and Statistics

Author: Michael J. Evans

Publisher: Macmillan

Published: 2004

Total Pages: 704

ISBN-13: 9780716747420

DOWNLOAD EBOOK

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.


Spatial Sampling with R

Spatial Sampling with R

Author: Dick J. Brus

Publisher: CRC Press

Published: 2022-09-26

Total Pages: 582

ISBN-13: 100060005X

DOWNLOAD EBOOK

Scientific research often starts with data collection. However, many researchers pay insufficient attention to this first step in their research. The author, researcher at Wageningen University and Research, often had to conclude that the data collected by fellow researchers were suboptimal, or in some cases even unsuitable for their aim. One reason is that sampling is frequently overlooked in statistics courses. Another reason is the lack of practical textbooks on sampling. Numerous books have been published on the statistical analysis and modelling of data using R, but to date no book has been published in this series on how these data can best be collected. This book fills this gap. Spatial Sampling with R presents an overview of sampling designs for spatial sample survey and monitoring. It shows how to implement the sampling designs and how to estimate (sub)population- and space-time parameters in R. Key features Describes classical, basic sampling designs for spatial survey, as well as recently developed, advanced sampling designs and estimators Presents probability sampling designs for estimating parameters for a (sub)population, as well as non-probability sampling designs for mapping Gives comprehensive overview of model-assisted estimators Covers Bayesian approach to sampling design Illustrates sampling designs with surveys of soil organic carbon, above-ground biomass, air temperature, opium poppy Explains integration of wall-to-wall data sets (e.g. remote sensing images) and sample data Data and R code available on github Exercises added making the book suitable as a textbook for students The target group of this book are researchers and practitioners of sample surveys, as well as students in environmental, ecological, agricultural science or any other science in which knowledge about a population of interest is collected through spatial sampling. This book helps to implement proper sampling designs, tailored to their problems at hand, so that valuable data are collected that can be used to answer the research questions.


Introductory Statistics 2e

Introductory Statistics 2e

Author: Barbara Illowsky

Publisher:

Published: 2023-12-13

Total Pages: 2106

ISBN-13:

DOWNLOAD EBOOK

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.