This series represents a compilation of the biosafety consensus documents developed by the OECD Working Group on Harmonisation of Regulatory Oversight in Biotechnology over the periods 2011-12 (Volume 5) and 2013-15 (Volume 6).
Volume 8 of the Series contains the first biosafety 'consensus document' to deal with the biology of an insect, the mosquito Aedes aegypti. Issued by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, the science-based consensus documents collate information for use during the regulatory risk assessment of biotechnology products, i.e. transgenic organisms (plants, animals, micro-organisms) when intended for release in the environment. Ae. aegypti mosquito is vectoring yellow fever, dengue, Zika and Chikungunya diseases in tropical and sub-tropical regions worldwide. Biotechnological applications are developed to control the mosquito population and reduce virus transmission. The book provides information on Ae. aegypti taxonomy, morphology, life cycle, reproductive biology, genetics, ecology, interactions with other species and the environment. The mosquito effects on human and animal health, and the control strategies/specific programmes to limit its development are also summarised.
Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.
These OECD Biosafety Consensus Documents identify elements of scientific information used in the environmental safety and risk assessment of transgenic organisms which are common to OECD member countries.
Genetic-based animal biotechnology has produced new food and pharmaceutical products and promises many more advances to benefit humankind. These exciting prospects are accompanied by considerable unease, however, about matters such as safety and ethics. This book identifies science-based and policy-related concerns about animal biotechnologyâ€"key issues that must be resolved before the new breakthroughs can reach their potential. The book includes a short history of the field and provides understandable definitions of terms like cloning. Looking at technologies on the near horizon, the authors discuss what we know and what we fear about their effectsâ€"the inadvertent release of dangerous microorganisms, the safety of products derived from biotechnology, the impact of genetically engineered animals on their environment. In addition to these concerns, the book explores animal welfare concerns, and our societal and institutional capacity to manage and regulate the technology and its products. This accessible volume will be important to everyone interested in the implications of the use of animal biotechnology.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
A transgenic organism is a plant, animal, bacterium, or other living organism that has had a foreign gene added to it by means of genetic engineering. Transgenic plants can arise by natural movement of genes between species, by cross-pollination based hybridization between different plant species (which is a common event in flowering plant evolution), or by laboratory manipulations by artificial insertion of genes from another species. Methods used in traditional breeding that generate transgenic plants by non-recombinant methods are widely familiar to professional plant scientists, and serve important roles in securing a sustainable future for agriculture by protecting crops from pest and helping land and water to be used more efficiently.There is worldwide interest in the biosafety issues related to transgenic crops because of issues such as increased pesticide use, increased crop and weed resistance to pesticides, gene flow to related plant species, negative effects on nontarget organisms, and reduced crop and ecosystem diversity. This book is intended to provide the basic information for a wide range of people involved in the release of transgenic crops. These will include scientists and researchers in the initial stage of developing transgenic products, industrialists, and decision makers. It will be of particular interest to plant scientists taking up biotechnological approaches to agricultural improvement for developing nations. - Discusses traditional and future technology for genetic modification - Compares conventional non-GM approaches and genetic modification - Presents a risk assessment methodology for GM techniques - Details mitigation techniques for human and environmental effects
These science-based consensus documents contain information for use during the regulatory assessment of food/feed products of modern biotechnology, i.e. developed from transgenic crops.
Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.