Surveys in Contemporary Mathematics

Surveys in Contemporary Mathematics

Author: Nicholas Young

Publisher: Cambridge University Press

Published: 2008

Total Pages: 370

ISBN-13: 0521705649

DOWNLOAD EBOOK

A collection of articles showcasing the achievements of young Russian researchers in combinatorial and algebraic geometry and topology.


Prokhorov and Contemporary Probability Theory

Prokhorov and Contemporary Probability Theory

Author: Albert N. Shiryaev

Publisher: Springer Science & Business Media

Published: 2013-01-09

Total Pages: 468

ISBN-13: 3642335497

DOWNLOAD EBOOK

The role of Yuri Vasilyevich Prokhorov as a prominent mathematician and leading expert in the theory of probability is well known. Even early in his career he obtained substantial results on the validity of the strong law of large numbers and on the estimates (bounds) of the rates of convergence, some of which are the best possible. His findings on limit theorems in metric spaces and particularly functional limit theorems are of exceptional importance. Y.V. Prokhorov developed an original approach to the proof of functional limit theorems, based on the weak convergence of finite dimensional distributions and the condition of tightness of probability measures. The present volume commemorates the 80th birthday of Yuri Vasilyevich Prokhorov. It includes scientific contributions written by his colleagues, friends and pupils, who would like to express their deep respect and sincerest admiration for him and his scientific work.​


Russian Mathematicians in the 20th Century

Russian Mathematicians in the 20th Century

Author: Yakov Sinai

Publisher: World Scientific

Published: 2003

Total Pages: 716

ISBN-13: 9789812383853

DOWNLOAD EBOOK

In the 20th century, many mathematicians in Russia made great contributions to the field of mathematics. This invaluable book, which presents the main achievements of Russian mathematicians in that century, is the first most comprehensive book on Russian mathematicians. It has been produced as a gesture of respect and appreciation for those mathematicians and it will serve as a good reference and an inspiration for future mathematicians. It presents differences in mathematical styles and focuses on Soviet mathematicians who often discussed “what to do” rather than “how to do it”. Thus, the book will be valued beyond historical documentation.The editor, Professor Yakov Sinai, a distinguished Russian mathematician, has taken pains to select leading Russian mathematicians — such as Lyapunov, Luzin, Egorov, Kolmogorov, Pontryagin, Vinogradov, Sobolev, Petrovski and Krein — and their most important works. One can, for example, find works of Lyapunov, which parallel those of Poincaré; and works of Luzin, whose analysis plays a very important role in the history of Russian mathematics; Kolmogorov has established the foundations of probability based on analysis. The editor has tried to provide some parity and, at the same time, included papers that are of interest even today.The original works of the great mathematicians will prove to be enjoyable to readers and useful to the many researchers who are preserving the interest in how mathematics was done in the former Soviet Union.


The Cremona Group and Its Subgroups

The Cremona Group and Its Subgroups

Author: Julie Déserti

Publisher: American Mathematical Soc.

Published: 2021-04-13

Total Pages: 187

ISBN-13: 1470460122

DOWNLOAD EBOOK

The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.


Kolmogorov in Perspective

Kolmogorov in Perspective

Author:

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 242

ISBN-13: 0821829181

DOWNLOAD EBOOK

The editorial board for the History of Mathematics series has selected for this volume a series of translations from two Russian publications, Kolmogorov in Remembrance and Mathematics and its Historical Development. This book, Kolmogorov in Perspective, includes articles written by Kolmogorov's students and colleagues and his personal accounts of shared experiences and lifelong mathematical friendships. The articles combine to give an excellent personal and scientific biography of this important mathematician. There is also an extensive bibliography with the complete list of Kolmogorov's work.


Mathematical Problems of Statistical Hydromechanics

Mathematical Problems of Statistical Hydromechanics

Author: M.I. Vishik

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 584

ISBN-13: 9400914237

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The ScandiJI of Father 'The Hermit Clad in Crane Feathers' in R. Brow" 'The point of a Pin'. van Gu\ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

Author: K. Glazek

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 394

ISBN-13: 9401599645

DOWNLOAD EBOOK

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).


Probability Theory, Function Theory, Mechanics

Probability Theory, Function Theory, Mechanics

Author: I︠U︡riĭ Vasilʹevich Prokhorov

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 338

ISBN-13: 9780821831328

DOWNLOAD EBOOK

This is a translation of the fifth and final volume in a special cycle of publications in commemoration of the 50th anniversary of the Steklov Mathematical Institute of the Academy of Sciences in the USSR. The purpose of the special cycle was to present surveys of work on certain important trends and problems pursued at the Institute. Because the choice of the form and character of the surveys were left up to the authors, the surveys do not necessarily form a comprehensive overview, but rather represent the authors' perspectives on the important developments.