Run-time Models for Self-managing Systems and Applications

Run-time Models for Self-managing Systems and Applications

Author: Danilo Ardagna

Publisher: Springer Science & Business Media

Published: 2010-11-15

Total Pages: 182

ISBN-13: 3034604335

DOWNLOAD EBOOK

The complexity of Information Technology (IT) systems has been steadily incre- ing in the past decades. In October 2001, IBM released the “Autonomic Computing Manifesto” observing that current applications have reached the size of millions of lines of code, while physical infrastructures include thousands of heterogeneous servers requiring skilled IT professionals to install, con?gure, tune, and maintain. System complexity has been recognized as the main obstacle to the further advan- ment of IT technology. The basic idea of Autonomic Computing is to develop IT systems that are able to manage themselves, as the human autonomic nervous system governs basic body functions such as heart rate or body temperature, thus freeing the conscious brain— IT administrators—from the burden of dealing with low-level vital functions. Autonomic Computing systems can be implemented by introducing autonomic controllers which continuously monitor, analyze, plan, and execute (the famous MAPE cycle) recon?guration actions on the system components. Monitoring acti- ties are deployed to measure the workload and performance metrics of each running component so as to identify system faults. The goal of the analysis activities is to determine the status of components from the monitoring data, and to forecast - ture conditions based on historical observations. Finally, plan and execute activities aim at deciding and actuating the next system con?guration, for example, deciding whether to accept or reject new requests, determining the best application to servers assignment, in order to the achieve the self-optimization goals.


[email protected]

Models@run.time

Author: Nelly Bencomo

Publisher: Springer

Published: 2014-07-18

Total Pages: 319

ISBN-13: 9783319089140

DOWNLOAD EBOOK

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on [email protected] held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.


Self-Aware Computing Systems

Self-Aware Computing Systems

Author: Samuel Kounev

Publisher: Springer

Published: 2017-01-23

Total Pages: 720

ISBN-13: 331947474X

DOWNLOAD EBOOK

This book provides formal and informal definitions and taxonomies for self-aware computing systems, and explains how self-aware computing relates to many existing subfields of computer science, especially software engineering. It describes architectures and algorithms for self-aware systems as well as the benefits and pitfalls of self-awareness, and reviews much of the latest relevant research across a wide array of disciplines, including open research challenges. The chapters of this book are organized into five parts: Introduction, System Architectures, Methods and Algorithms, Applications and Case Studies, and Outlook. Part I offers an introduction that defines self-aware computing systems from multiple perspectives, and establishes a formal definition, a taxonomy and a set of reference scenarios that help to unify the remaining chapters. Next, Part II explores architectures for self-aware computing systems, such as generic concepts and notations that allow a wide range of self-aware system architectures to be described and compared with both isolated and interacting systems. It also reviews the current state of reference architectures, architectural frameworks, and languages for self-aware systems. Part III focuses on methods and algorithms for self-aware computing systems by addressing issues pertaining to system design, like modeling, synthesis and verification. It also examines topics such as adaptation, benchmarks and metrics. Part IV then presents applications and case studies in various domains including cloud computing, data centers, cyber-physical systems, and the degree to which self-aware computing approaches have been adopted within those domains. Lastly, Part V surveys open challenges and future research directions for self-aware computing systems. It can be used as a handbook for professionals and researchers working in areas related to self-aware computing, and can also serve as an advanced textbook for lecturers and postgraduate students studying subjects like advanced software engineering, autonomic computing, self-adaptive systems, and data-center resource management. Each chapter is largely self-contained, and offers plenty of references for anyone wishing to pursue the topic more deeply.


Software Engineering for Self-Adaptive Systems III. Assurances

Software Engineering for Self-Adaptive Systems III. Assurances

Author: Rogério de Lemos

Publisher: Springer

Published: 2018-01-16

Total Pages: 440

ISBN-13: 3319741837

DOWNLOAD EBOOK

A major challenge for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, energy-efficient, customizable, and configurable when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip the software system with self-adaptation capabilities. Despite recent advances in this area, one key aspect that remains to be tackled in depth is the provision of assurances. Originating from a Dagstuhl seminar held in December 2013, this book constitutes the third volume in the series “Software Engineering for Self-Adaptive Systems”, and looks specifically into the provision of assurances. Opening with an overview chapter on Research Challenges, the book presents 13 further chapters written and carefully reviewed by internationally leading researchers in the field. The book is divided into topical sections on research challenges, evaluation, integration and coordination, and reference architectures and platforms.


[email protected]

Models@run.time

Author: Nelly Bencomo

Publisher: Springer

Published: 2014-07-05

Total Pages: 329

ISBN-13: 3319089153

DOWNLOAD EBOOK

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on [email protected] held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.


Linear Parameter-Varying and Time-Delay Systems

Linear Parameter-Varying and Time-Delay Systems

Author: Corentin Briat

Publisher: Springer

Published: 2014-09-03

Total Pages: 412

ISBN-13: 3662440504

DOWNLOAD EBOOK

This book provides an introduction to the analysis and control of Linear Parameter-Varying Systems and Time-Delay Systems and their interactions. The purpose is to give the readers some fundamental theoretical background on these topics and to give more insights on the possible applications of these theories. This self-contained monograph is written in an accessible way for readers ranging from undergraduate/PhD students to engineers and researchers willing to know more about the fields of time-delay systems, parameter-varying systems, robust analysis, robust control, gain-scheduling techniques in the LPV fashion and LMI based approaches. The only prerequisites are basic knowledge in linear algebra, ordinary differential equations and (linear) dynamical systems. Most of the results are proved unless the proof is too complex or not necessary for a good understanding of the results. In the latter cases, suitable references are systematically provided. The first part pertains on the representation, analysis and control of LPV systems along with a reminder on robust analysis and control techniques. The second part is concerned with the representation and analysis of time-delay systems using various time-domain techniques. The third and last part is devoted to the representation, analysis, observation, filtering and control of LPV time-delay systems. The book also presents many important basic and advanced results on the manipulation of LMIs.


Models in Software Engineering

Models in Software Engineering

Author: Juergen Dingel

Publisher: Springer

Published: 2011-05-13

Total Pages: 427

ISBN-13: 3642212107

DOWNLOAD EBOOK

This book presents a comprehensive documentation of the scientific outcome of 14 satellite events held at the 13th International Conference on Model-Driven Engineering, Languages and Systems, MODELS 2010, held in Oslo, Norway, in October 2010. Besides the 21 revised best papers selected from 12 topically focused workshops, the post-proceedings also covers the doctoral symposium and the educators symposium; each of the 14 satellite events covered is introduced by a summary of the respective organizers. All relevant current aspects in model-based systems design and analysis are addressed. This book is the companion of the MODELS 2010 main conference proceedings LNCS 6394/6395.


Safety and Security of Cyber-Physical Systems

Safety and Security of Cyber-Physical Systems

Author: Frank J. Furrer

Publisher: Springer Nature

Published: 2022-07-20

Total Pages: 559

ISBN-13: 365837182X

DOWNLOAD EBOOK

Cyber-physical systems (CPSs) consist of software-controlled computing devices communicating with each other and interacting with the physical world through sensors and actuators. Because most of the functionality of a CPS is implemented in software, the software is of crucial importance for the safety and security of the CPS. This book presents principle-based engineering for the development and operation of dependable software. The knowledge in this book addresses organizations that want to strengthen their methodologies to build safe and secure software for mission-critical cyber-physical systems. The book: • Presents a successful strategy for the management of vulnerabilities, threats, and failures in mission-critical cyber-physical systems; • Offers deep practical insight into principle-based software development (62 principles are introduced and cataloged into five categories: Business & organization, general principles, safety, security, and risk management principles); • Provides direct guidance on architecting and operating dependable cyber-physical systems for software managers and architects.


Modeling and Simulating Software Architectures

Modeling and Simulating Software Architectures

Author: Ralf H. Reussner

Publisher: MIT Press

Published: 2016-10-21

Total Pages: 398

ISBN-13: 0262336790

DOWNLOAD EBOOK

A new, quantitative architecture simulation approach to software design that circumvents costly testing cycles by modeling quality of service in early design states. Too often, software designers lack an understanding of the effect of design decisions on such quality attributes as performance and reliability. This necessitates costly trial-and-error testing cycles, delaying or complicating rollout. This book presents a new, quantitative architecture simulation approach to software design, which allows software engineers to model quality of service in early design stages. It presents the first simulator for software architectures, Palladio, and shows students and professionals how to model reusable, parametrized components and configured, deployed systems in order to analyze service attributes. The text details the key concepts of Palladio's domain-specific modeling language for software architecture quality and presents the corresponding development stage. It describes how quality information can be used to calibrate architecture models from which detailed simulation models are automatically derived for quality predictions. Readers will learn how to approach systematically questions about scalability, hardware resources, and efficiency. The text features a running example to illustrate tasks and methods as well as three case studies from industry. Each chapter ends with exercises, suggestions for further reading, and “takeaways” that summarize the key points of the chapter. The simulator can be downloaded from a companion website, which offers additional material. The book can be used in graduate courses on software architecture, quality engineering, or performance engineering. It will also be an essential resource for software architects and software engineers and for practitioners who want to apply Palladio in industrial settings.