This book systematically presents energy-efficient robust fusion estimation methods to achieve thorough and comprehensive results in the context of network-based fusion estimation. It summarizes recent findings on fusion estimation with communication constraints; several novel energy-efficient and robust design methods for dealing with energy constraints and network-induced uncertainties are presented, such as delays, packet losses, and asynchronous information... All the results are presented as algorithms, which are convenient for practical applications.
Presents the key clock synchronization protocols, emphasizing design and optimization techniques for building efficient estimation schemes and performance benchmarks.
This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investigates the spatial distribution of sensor nodes and basic scalable estimation algorithms, the consensus-based estimation capability for a class of relay assisted sensor networks with asymmetric communication topology, and the problem of filter design for mobile target tracking over WSNs. From the system perspective, the network topology is closely related to the capability and efficiency of network-wide scalable distributed estimation. Wireless Sensor Networks: Distributed Consensus Estimation is a valuable resource for researchers and professionals working in wireless communications, networks and distributed computing. Advanced-level students studying computer science and electrical engineering will also find the content helpful.
This book provides an introductory treatment of the fundamentals of decision-making in a distributed framework. Classical detection theory assumes that complete observations are available at a central processor for decision-making. More recently, many applications have been identified in which observations are processed in a distributed manner and decisions are made at the distributed processors, or processed data (compressed observations) are conveyed to a fusion center that makes the global decision. Conventional detection theory has been extended so that it can deal with such distributed detection problems. A unified treatment of recent advances in this new branch of statistical decision theory is presented. Distributed detection under different formulations and for a variety of detection network topologies is discussed. This material is not available in any other book and has appeared relatively recently in technical journals. The level of presentation is such that the hook can be used as a graduate-level textbook. Numerous examples are presented throughout the book. It is assumed that the reader has been exposed to detection theory. The book will also serve as a useful reference for practicing engineers and researchers. I have actively pursued research on distributed detection and data fusion over the last decade, which ultimately interested me in writing this book. Many individuals have played a key role in the completion of this book.
This book constitutes the refereed proceedings of the 7th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2012, held in Yellow Mountains, China, in August 2012. The 24 revised full papers presented together with 32 invited papers were carefully reviewed and selected from 116 submissions. The papers cover a wide range of topics such as cognitive radio networks, cyber-physical network systems, mobile handset networking systems, underwater and radar wireless networks, and wireless and mobile security.
Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.
This book presents the latest research results in the area of secure localization for both wireless mobile ad hoc networks and wireless sensor networks. It is suitable as a text for computer science courses in wireless systems and security. It includes implementation studies with mica2 mote sensors. Due to the open spectrum nature of wireless communication, it is subject to attacks and intrusions. Hence the wireless network synchronization needs to be both robust and secure. Furthermore, issues such as energy constraints and mobility make the localization process even more challenging. The book will also interest developers of secure wireless systems.
The International Conference on “Computational Intelligence in Data Mining” (ICCIDM), after three successful versions, has reached to its fourth version with a lot of aspiration. The best selected conference papers are reviewed and compiled to form this volume. The proceedings discusses the latest solutions, scientific results and methods in solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. The volume presents a sneak preview into the strengths and weakness of trending applications and research findings in the field of computational intelligence and data mining along with related field.
This book constitutes the refereed proceedings of the 8th International Conference on Distributed Computing and Internet Technology, ICDCIT 2012, held in Bhubaneswar, India, in February 2012. The 17 full papers presented together with 15 short papers in this volume were carefully reviewed and selected from 89 submissions. In addition the book contains the full versions of 6 invited talks. The papers range over a spectrum of issues related to the theme, covering theoretical foundations, computational tools, and societal applications. State of the art techniques like game theoretic ones are used by authors for analyzing conceptual problems.
This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the book describes the derivation of theoretical bounds in minimax decentralized hypothesis testing, which have not yet been known. As a timely report on the state-of-the-art in robust hypothesis testing, this book is mainly intended for postgraduates and researchers in the field of electrical and electronic engineering, statistics and applied probability. Moreover, it may be of interest for students and researchers working in the field of classification, pattern recognition and cognitive radio.