Risk Analysis in Stochastic Supply Chains

Risk Analysis in Stochastic Supply Chains

Author: Tsan-Ming Choi

Publisher: Springer Science & Business Media

Published: 2012-06-05

Total Pages: 104

ISBN-13: 1461438691

DOWNLOAD EBOOK

Risk analysis is crucial in stochastic supply chain models. Over the past few years, the pace has quickened for research attempting to explore risk analysis issues in supply chain management problems, while the majority of recent papers focus on conceptual framework or computational numerical analysis. Pioneered by Nobel laureate Markowitz in the 1950s, the mean-risk (MR) formulation became a fundamental theory for risk management in finance. Despite the significance and popularity of MR-related approaches in finance, their applications in studying multi-echelon supply chain management problems have only been seriously explored in recent years. While the MR approach has already been shown to be useful in conducting risk analysis in stochastic supply chain models, there is no comprehensive reference source that provides the state-of-the-art findings on this important model for supply chain management. Thus it is significant to have a book that reviews and extends the MR related works for supply chain risk analysis. This book is organized into five chapters. Chapter 1 introduces the topic, offers a timely review of various related areas, and explains why the MR approach is important for conducting supply chain risk analysis. Chapter 2 examines the single period inventory model with the mean-variance and mean-semi-deviation approaches. Extensive discussions on the efficient frontiers are also reported. Chapter 3 explores the infinite horizon multi-period inventory model with a mean-variance approach. Chapter 4 investigates the supply chain coordination problem with a versatile target sales rebate contract and a risk averse retailer possessing the mean-variance optimization objective. Chapter 5 concludes the book and discusses various promising future research directions and extensions. Every chapter can be taken as a self-contained article, and the notation within each chapter is consistently employed.


Portfolio Choice Problems

Portfolio Choice Problems

Author: Nicolas Chapados

Publisher: Springer Science & Business Media

Published: 2011-07-12

Total Pages: 107

ISBN-13: 1461405777

DOWNLOAD EBOOK

This brief offers a broad, yet concise, coverage of portfolio choice, containing both application-oriented and academic results, along with abundant pointers to the literature for further study. It cuts through many strands of the subject, presenting not only the classical results from financial economics but also approaches originating from information theory, machine learning and operations research. This compact treatment of the topic will be valuable to students entering the field, as well as practitioners looking for a broad coverage of the topic.


Essentials of Excel, Excel VBA, SAS and Minitab for Statistical and Financial Analyses

Essentials of Excel, Excel VBA, SAS and Minitab for Statistical and Financial Analyses

Author: Cheng-Few Lee

Publisher: Springer

Published: 2016-11-24

Total Pages: 1043

ISBN-13: 3319388673

DOWNLOAD EBOOK

This introductory textbook for business statistics teaches statistical analysis and research methods via business case studies and financial data using Excel, Minitab, and SAS. Every chapter in this textbook engages the reader with data of individual stock, stock indices, options, and futures. One studies and uses statistics to learn how to study, analyze, and understand a data set of particular interest. Some of the more popular statistical programs that have been developed to use statistical and computational methods to analyze data sets are SAS, SPSS, and Minitab. Of those, we look at Minitab and SAS in this textbook. One of the main reasons to use Minitab is that it is the easiest to use among the popular statistical programs. We look at SAS because it is the leading statistical package used in industry. We also utilize the much less costly and ubiquitous Microsoft Excel to do statistical analysis, as the benefits of Excel have become widely recognized in the academic world and its analytical capabilities extend to about 90 percent of statistical analysis done in the business world. We demonstrate much of our statistical analysis using Excel and double check the analysis and outcomes using Minitab and SAS—also helpful in some analytical methods not possible or practical to do in Excel.


Financial Econometrics, Mathematics and Statistics

Financial Econometrics, Mathematics and Statistics

Author: Cheng-Few Lee

Publisher: Springer

Published: 2019-06-03

Total Pages: 657

ISBN-13: 1493994298

DOWNLOAD EBOOK

This rigorous textbook introduces graduate students to the principles of econometrics and statistics with a focus on methods and applications in financial research. Financial Econometrics, Mathematics, and Statistics introduces tools and methods important for both finance and accounting that assist with asset pricing, corporate finance, options and futures, and conducting financial accounting research. Divided into four parts, the text begins with topics related to regression and financial econometrics. Subsequent sections describe time-series analyses; the role of binomial, multi-nomial, and log normal distributions in option pricing models; and the application of statistics analyses to risk management. The real-world applications and problems offer students a unique insight into such topics as heteroskedasticity, regression, simultaneous equation models, panel data analysis, time series analysis, and generalized method of moments. Written by leading academics in the quantitative finance field, allows readers to implement the principles behind financial econometrics and statistics through real-world applications and problem sets. This textbook will appeal to a less-served market of upper-undergraduate and graduate students in finance, economics, and statistics. ​


Mathematical Modelling and Numerical Methods in Finance

Mathematical Modelling and Numerical Methods in Finance

Author: Alain Bensoussan

Publisher: Elsevier

Published: 2009-06-16

Total Pages: 743

ISBN-13: 0080931006

DOWNLOAD EBOOK

Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. - Coverage of all aspects of quantitative finance including models, computational methods and applications - Provides an overview of new ideas and results - Contributors are leaders of the field


Stochastic Dominance

Stochastic Dominance

Author: G. A. Whitmore

Publisher:

Published: 1978

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

Theoretical foundations of stochastic dominance; Portfolio applications: empirical studies; Portfolio applications: computational aspects; Applications to financial management and capital markets; Applications in economic theory and analysis.


Max Plus at Work

Max Plus at Work

Author: Bernd Heidergott

Publisher: Princeton University Press

Published: 2014-09-08

Total Pages: 226

ISBN-13: 1400865239

DOWNLOAD EBOOK

Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, computer communication systems, production lines, and flows in networks are all based on discrete even systems, and thus can be conveniently described and analyzed by means of max-plus algebra. The book consists of an introduction and thirteen chapters in three parts. Part One explores the introduction of max-plus algebra and of system descriptions based upon it. Part Two deals with a real application, namely the design of timetables for railway networks. Part Three examines various extensions, such as stochastic systems and min-max-plus systems. The text is suitable for last-year undergraduates in mathematics, and each chapter provides exercises, notes, and a reference section.


Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Author: Cheng Few Lee

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 5053

ISBN-13: 9811202400

DOWNLOAD EBOOK

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.


Fuzzy Portfolio Optimization

Fuzzy Portfolio Optimization

Author: Yong Fang

Publisher: Springer Science & Business Media

Published: 2008-09-20

Total Pages: 170

ISBN-13: 3540779264

DOWNLOAD EBOOK

Most of the existing portfolio selection models are based on the probability theory. Though they often deal with the uncertainty via probabilistic - proaches, we have to mention that the probabilistic approaches only partly capture the reality. Some other techniques have also been applied to handle the uncertainty of the ?nancial markets, for instance, the fuzzy set theory [Zadeh (1965)]. In reality, many events with fuzziness are characterized by probabilistic approaches, although they are not random events. The fuzzy set theory has been widely used to solve many practical problems, including ?nancial risk management. By using fuzzy mathematical approaches, quan- tative analysis, qualitative analysis, the experts’ knowledge and the investors’ subjective opinions can be better integrated into a portfolio selection model. The contents of this book mainly comprise of the authors’ research results for fuzzy portfolio selection problems in recent years. In addition, in the book, the authors will also introduce some other important progress in the ?eld of fuzzy portfolio optimization. Some fundamental issues and problems of po- folioselectionhavebeenstudiedsystematicallyandextensivelybytheauthors to apply fuzzy systems theory and optimization methods. A new framework for investment analysis is presented in this book. A series of portfolio sel- tion models are given and some of them might be more e?cient for practical applications. Some application examples are given to illustrate these models by using real data from the Chinese securities markets.