Rigidity Theory and Applications

Rigidity Theory and Applications

Author: M.F. Thorpe

Publisher: Springer Science & Business Media

Published: 1999-05-31

Total Pages: 435

ISBN-13: 0306461153

DOWNLOAD EBOOK

Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.


Rigidity Theory and Applications

Rigidity Theory and Applications

Author: M.F. Thorpe

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 435

ISBN-13: 0306470896

DOWNLOAD EBOOK

Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.


Euclidean Distance Matrices and Their Applications in Rigidity Theory

Euclidean Distance Matrices and Their Applications in Rigidity Theory

Author: Abdo Y. Alfakih

Publisher: Springer

Published: 2018-10-13

Total Pages: 258

ISBN-13: 3319978462

DOWNLOAD EBOOK

This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in our approach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.


Rigidity and Symmetry

Rigidity and Symmetry

Author: Robert Connelly

Publisher: Springer

Published: 2014-06-11

Total Pages: 378

ISBN-13: 1493907816

DOWNLOAD EBOOK

This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.


Combinatorial Rigidity

Combinatorial Rigidity

Author: Jack E. Graver

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 184

ISBN-13: 0821838016

DOWNLOAD EBOOK

This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. The book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibiolography with over 150 entries. The book is aimed at graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering. Accessible to those who have had an introduction to graph theory at the senior or graduate level, the book would be suitable for a graduate course in graph theory.


Applications of Deformation Rigidity Theory in Von Neumann Algebras

Applications of Deformation Rigidity Theory in Von Neumann Algebras

Author: Bogdan Teodor Udrea

Publisher:

Published: 2012

Total Pages: 74

ISBN-13:

DOWNLOAD EBOOK

This work contains some structural results for von Neumann algebras arising from measure preserving actions by direct products of groups on probability spaces. The technology and the methods we use are a continuation of those used by Chifan and Sinclair in [10]. By employing these methods, we obtain new examples of strongly solid factors as well as von Neumann algebras with unique or no Cartan subalgebra. We show for instance that every II 1 factor associated with a weakly amenable group in the class S of Ozawa is strongly solid [59]. We also obtain a product version of this result: any maximal abelian *-subalgebra of any II 1 factor associated with a finite direct product of weakly amenable groups in the class S of Ozawa has an amenable normalizing algebra. Finally, pairing some of these results with Ioana's cocycle superrigidity theorem [36], we prove that compact actions by finite products of lattices in Sp(n, 1), n ≥ 2, are virtually W*-superrigid. The results presented here are joint work with Ionut Chifan and Thomas Sinclair. They constitute the substance of an article [11] which has already been submitted for publication.


Rigid Designation and Theoretical Identities

Rigid Designation and Theoretical Identities

Author: Joseph LaPorte

Publisher: Oxford University Press

Published: 2013

Total Pages: 260

ISBN-13: 0199609209

DOWNLOAD EBOOK

Joseph LaPorte offers an original account of the connections between the reference of words for properties and kinds, and theoretical identity statements. He argues that terms for properties, as well as for concrete objects, are rigid designators, and defends the Kripkean tradition of theoretical identities.


Applications of Polynomial Systems

Applications of Polynomial Systems

Author: David A. Cox

Publisher: American Mathematical Soc.

Published: 2020-03-02

Total Pages: 250

ISBN-13: 1470451379

DOWNLOAD EBOOK

Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.