This book is an account of current developments in computational chemistry, a new multidisciplinary area of research. Experts in computational chemistry, the editors use and develop techniques for computer-assisted molecular design. The core of the text itself deals with techniques for computer-assisted molecular design. The book is suitable for both beginners and experts. In addition, protocols and software for molecular recognition and the relationship between structure and biological activity of drug molecules are discussed in detail. Each chapter includes a mini-tutorial, as well as discussion of advanced topics. Special Feature: The appendix to this book contains an extensive list of available software for molecular modeling.
Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 31 include: Lattice-Boltzmann Modeling of Multicomponent Systems: An Introduction Modeling Mechanochemistry from First Principles Mapping Energy Transport Networks in Proteins The Role of Computations in Catalysis The Construction of Ab Initio Based Potential Energy Surfaces Uncertainty Quantification for Molecular Dynamics
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding
A practical, easily accessible guide for bench-top chemists, thisbook focuses on accurately applying computational chemistrytechniques to everyday chemistry problems. Provides nonmathematical explanations of advanced topics incomputational chemistry. Focuses on when and how to apply different computationaltechniques. Addresses computational chemistry connections to biochemicalsystems and polymers. Provides a prioritized list of methods for attacking difficultcomputational chemistry problems, and compares advantages anddisadvantages of various approximation techniques. Describes how the choice of methods of software affectsrequirements for computer memory and processing time.
Seit vielen Jahren praxisbewährt! Auch dieser 18. Band der Reihe Reviews in Computational Chemistry gibt Studenten und Forschern einen Einblick in Rechenverfahren, die sie anwenden wollen, ohne daß die theoretischen Grundlagen zu ihrem Arbeitsgebiet gehören. Das methodische Spektrum umfaßt Molecular Modeling, Quantenchemie, CAMD, QSAR, Molekülmechanik und -dynamik. Mit einem Autoren- und einem Stichwortverzeichnis sowie einer ausführlichen Softwareliste, die Hunderte von Programmen, Dienstleistungen und Anbietern umfaßt.
THIS BOOK HAS SIX TUTORIALS AND REVIEWS WRITTEN BY INVITED EXPERTS. FIVE CHAPTERS TEACH TOPICS IN QUANTUM MECHANICS AND MOLECULAR SIMULATIONS. THE SIXTH CHAPTER EXPLAINS HOW PROGRAMS FOR CHEMICAL STRUCTURE DRAWING WORK. AN EDITORIAL DISCUSSES SOME OF THE MOST WELL-KNOWN PERSONAGES IN COMPUTATIONAL CHEMISTRY. FROM REVIEWS OF THE SERIES "Anyone who is doing or intends to do computational research on molecular structure and design should seriously consider purchasing this book for his or her personal library."-JOURNAL OF COMPUTATIONAL CHEMISTRY. "These reviews are becoming regarded as the standard reference among both specialists and novices in the expanding field of computational chemistry." -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING. "[This book is] written for newcomers learning about molecular modeling techniques as well as for seasoned professionals who need to acquire expertise in areas outside their own."-JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCE.
Annual Reports in Computational Chemistry provides timely and critical reviews of important topics in computational chemistry as applied to all chemical disciplines. Topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists. - Quantum chemistry - Molecular mechanics - Force fields - Chemical education and applications in academic and industrial settings
This important book collects together state-of-the-art reviews of diverse topics covering almost all the major areas of modern quantum chemistry. The current focus in the discipline of chemistry — synthesis, structure, reactivity and dynamics — is mainly on control. A variety of essential computational tools at the disposal of chemists have emerged from recent studies in quantum chemistry. The acceptance and application of these tools in the interfacial disciplines of the life and physical sciences continue to grow. The new era of modern quantum chemistry throws up promising potentialities for further research.Reviews of Modern Quantum Chemistry is a joint endeavor, in which renowned scientists from leading universities and research laboratories spanning 22 countries present 59 in-depth reviews. Along with a personal introduction written by Professor Walter Kohn, Nobel laureate (Chemistry, 1998), the articles celebrate the scientific contributions of Professor Robert G Parr on the occasion of his 80th birthday.List of Contributors: W Kohn, M Levy, R Pariser, B R Judd, E Lo, B N Plakhutin, A Savin, P Politzer, P Lane, J S Murray, A J Thakkar, S R Gadre, R F Nalewajski, K Jug, M Randic, G Del Re, U Kaldor, E Eliav, A Landau, M Ehara, M Ishida, K Toyota, H Nakatsuji, G Maroulis, A M Mebel, S Mahapatra, R Carbó-Dorca, Á Nagy, I A Howard, N H March, S-B Liu, R G Pearson, N Watanabe, S Ten-no, S Iwata, Y Udagawa, E Valderrama, X Fradera, I Silanes, J M Ugalde, R J Boyd, E V Ludeña, V V Karasiev, L Massa, T Tsuneda, K Hirao, J-M Tao, J P Perdew, O V Gritsenko, M Grüning, E J Baerends, F Aparicio, J Garza, A Cedillo, M Galván, R Vargas, E Engel, A Höck, R N Schmid, R M Dreizler, J Poater, M Solà, M Duran, J Robles, X Fradera, P K Chattaraj, A Poddar, B Maiti, A Cedillo, S Gutiérrez-Oliva, P Jaque, A Toro-Labbé, H Chermette, P Boulet, S Portmann, P Fuentealba, R Contreras, P Geerlings, F De Proft, R Balawender, D P Chong, A Vela, G Merino, F Kootstra, P L de Boeij, R van Leeuwen, J G Snijders, N T Maitra, K Burke, H Appel, E K U Gross, M K Harbola, H F Hameka, C A Daul, I Ciofini, A Bencini, S K Ghosh, A Tachibana, J M Cabrera-Trujillo, F Tenorio, O Mayorga, M Cases, V Kumar, Y Kawazoe, A M Köster, P Calaminici, Z Gómez, U Reveles, J A Alonso, L M Molina, M J López, F Dugue, A Mañanes, C A Fahlstrom, J A Nichols, D A Dixon, P A Derosa, A G Zacarias, J M Seminario, D G Kanhere, A Vichare, S A Blundell, Z-Y Lu, H-Y Liu, M Elstner, W-T Yang, J Muñoz, X Fradera, M Orozco, F J Luque, P Tarakeshwar, H M Lee, K S Kim, M Valiev, E J Bylaska, A Gramada, J H Weare, J Brickmann, M Keil, T E Exner, M Hoffmann & J Rychlewski.
REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz, Raima Larter, and Thomas R. Cundari This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. TOPICS COVERED IN Volume 21 iNCLUDE AB INITIO QUANTUM SIMULATION IN SOLID STATE CHEMISTRY; MOLECULAR QUANTUM SIMILARITY; ENUMERATING MOLECULES; VARIABLE SELECTION; BIOMOLECULAR APPLICATIONS OF POISSON-BOLTZMANN METHODS; AND DATA SOURCES AND COMPUTATIONAL APPROACHES FOR GENERATING MODELS OF GENE REGULATORY NETWORKS. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." --JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." --JOURNAL OF THE AMERICAN CHEMICAL SOCIETY