Dense Magnetized Plasmas

Dense Magnetized Plasmas

Author: International Atomic Energy Agency

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9789201391100

DOWNLOAD EBOOK

Presents results achieved within an IAEA coordinated research project on dense magnetized plasmas (DMPs) with respect to the needs of plasma research in developed and developing IAEA Member States. Of specific interest is the improvement of experimental set-ups for DMPs.


Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Author: Dimitri Batani

Publisher: Springer Science & Business Media

Published: 2001-09-30

Total Pages: 434

ISBN-13: 9780306466151

DOWNLOAD EBOOK

Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily


Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2003-05-11

Total Pages: 177

ISBN-13: 030908637X

DOWNLOAD EBOOK

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.


Plasma Science

Plasma Science

Author: National Academies of Sciences Engineering and Medicine

Publisher:

Published: 2021-02-28

Total Pages: 291

ISBN-13: 9780309677608

DOWNLOAD EBOOK

Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.


Assessment of Inertial Confinement Fusion Targets

Assessment of Inertial Confinement Fusion Targets

Author: National Research Council

Publisher: National Academies Press

Published: 2013-07-17

Total Pages: 119

ISBN-13: 0309270626

DOWNLOAD EBOOK

In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, particularly in the area of ICF targets and nonproliferation. Thus, the Panel on the Assessment of Inertial Confinement Fusion Targets ("the panel") was assembled, composed of experts able to access the needed information. The panel was charged with advising the Committee on the Prospects for Inertial Confinement Fusion Energy Systems on these issues, both by internal discussion and by this unclassified report. A Panel on Fusion Target Physics ("the panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Committee") and will prepare a report that describes the R&D challenges to providing suitable targets, on the basis of parameters established and provided to the Panel by the Committee. The Panel on Fusion Target Physics will prepare a report that will assess the current performance of fusion targets associated with various ICF concepts in order to understand: 1. The spectrum output; 2. The illumination geometry; 3. The high-gain geometry; and 4. The robustness of the target design. The panel addressed the potential impacts of the use and development of current concepts for Inertial Fusion Energy on the proliferation of nuclear weapons information and technology, as appropriate. The Panel examined technology options, but does not provide recommendations specific to any currently operating or proposed ICF facility.


High-Field Science

High-Field Science

Author: Toshiki Tajima

Publisher: Springer Science & Business Media

Published: 2001-03-31

Total Pages: 246

ISBN-13: 9780306463761

DOWNLOAD EBOOK

High Field Science is a proceedings volume from a meeting at Lawrence Livermore Laboratory, and contains papers from the top experts in the fields of ultraintense laser technology, laser fusion energy, high energy laser electron acceleration, bright X-ray sources by lasers, laboratory laser astrophysics, and applications to relativity, high density and high energy physics.