Response Surface Methodology

Response Surface Methodology

Author: Raymond H. Myers

Publisher: John Wiley & Sons

Published: 2016-01-04

Total Pages: 854

ISBN-13: 1118916034

DOWNLOAD EBOOK

Praise for the Third Edition: “This new third edition has been substantially rewritten and updated with new topics and material, new examples and exercises, and to more fully illustrate modern applications of RSM.” - Zentralblatt Math Featuring a substantial revision, the Fourth Edition of Response Surface Methodology: Process and Product Optimization Using Designed Experiments presents updated coverage on the underlying theory and applications of response surface methodology (RSM). Providing the assumptions and conditions necessary to successfully apply RSM in modern applications, the new edition covers classical and modern response surface designs in order to present a clear connection between the designs and analyses in RSM. With multiple revised sections with new topics and expanded coverage, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition includes: Many updates on topics such as optimal designs, optimization techniques, robust parameter design, methods for design evaluation, computer-generated designs, multiple response optimization, and non-normal responses Additional coverage on topics such as experiments with computer models, definitive screening designs, and data measured with error Expanded integration of examples and experiments, which present up-to-date software applications, such as JMP®, SAS, and Design-Expert®, throughout An extensive references section to help readers stay up-to-date with leading research in the field of RSM An ideal textbook for upper-undergraduate and graduate-level courses in statistics, engineering, and chemical/physical sciences, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition is also a useful reference for applied statisticians and engineers in disciplines such as quality, process, and chemistry.


Response Surface Methodology And Related Topics

Response Surface Methodology And Related Topics

Author: Jessie Yuyun Yang

Publisher: World Scientific

Published: 2006-01-16

Total Pages: 472

ISBN-13: 9814479586

DOWNLOAD EBOOK

This is the first edited volume on response surface methodology (RSM). It contains 17 chapters written by leading experts in the field and covers a wide variety of topics ranging from areas in classical RSM to more recent modeling approaches within the framework of RSM, including the use of generalized linear models. Topics covering particular aspects of robust parameter design, response surface optimization, mixture experiments, and a variety of new graphical approaches in RSM are also included. The main purpose of this volume is to provide an overview of the key ideas that have shaped RSM, and to bring attention to recent research directions and developments in RSM, which can have many useful applications in a variety of fields. The volume will be very helpful to researchers as well as practitioners interested in RSM's theory and potential applications. It will be particularly useful to individuals who have used RSM methods in the past, but have not kept up with its recent developments, both in theory and applications.


RSM Simplified

RSM Simplified

Author: Mark J. Anderson

Publisher: CRC Press

Published: 2016-08-05

Total Pages: 250

ISBN-13: 1315351722

DOWNLOAD EBOOK

This book continues where DOE Simplified leaves off in Chapter 8 with an introduction to "Response Surface Methods [RSM] for Optimization." It presents this advanced tool for design of experiments (DOE) in a way that anyone with a minimum of technical training can understand and appreciate. Unlike any other book of its kind, RSM Simplified keeps formulas to a minimum—making liberal use of figures, charts, graphs and checklists. It also offers many relevant examples, amusing and fun do-it-yourself exercises.


Response Surfaces, Mixtures, and Ridge Analyses

Response Surfaces, Mixtures, and Ridge Analyses

Author: George E. P. Box

Publisher: John Wiley & Sons

Published: 2007-01-22

Total Pages: 880

ISBN-13: 047007275X

DOWNLOAD EBOOK

The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.


Optimal Design of Experiments

Optimal Design of Experiments

Author: Peter Goos

Publisher: John Wiley & Sons

Published: 2011-06-28

Total Pages: 249

ISBN-13: 1119976162

DOWNLOAD EBOOK

"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.


Response Surfaces: Designs and Analyses

Response Surfaces: Designs and Analyses

Author: Andre I. Khuri

Publisher: CRC Press

Published: 1996-08-08

Total Pages: 544

ISBN-13: 9780824797416

DOWNLOAD EBOOK

Response Surfaces: Designs and Analyses; Second Edition presents techniques for designing experiments that yield adequate and reliable measurements of one or several responses of interest, fitting and testing the suitability of empirical models used for acquiring information from the experiments, and for utilizing the experimental results to make decisions concerning the system under investigation. This edition contains chapters on response surface models with block effects and on Taguchi's robust parameter design, additional details on transformation of response variable, more material on modified ridge analysis, and new design criteria, including rotatability for multiresponse experiments. It also presents an innovative technique for displaying correlation among several response. Numerical examples throughout the book plus exercises--with worked solutions to selected problems--complement the text.


Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes

Author: Valter Silva

Publisher: BoD – Books on Demand

Published: 2018-03-07

Total Pages: 181

ISBN-13: 9535138774

DOWNLOAD EBOOK

Optimized operating conditions for complex systems can be attained by using advanced combinations of numerical and statistical methodologies. One of the most efficient and straightforward solutions relies on the application of statistical methods with an emphasis on the design of experiments (DoEs). Throughout the book, the design and analysis of experiments are conducted involving several approaches, namely, Taguchi, response surface methods, statistical correlations, or even fractional factorial and model-based evolutionary operation designs. This book not only presents a theoretical overview about the different approaches but also contains material that covers the use of the experimental analysis applied to several chemical processes. Some chapters highlight the use of software products to assist experimenters in both the design and analysis stages. It helps graduate students, teachers, researchers, and other professionals who are interested in chemical process optimization and also provides a good basis of theoretical knowledge and valuable insights into the technical details of these tools as well as explains common pitfalls to avoid. The world's leading pharmaceutical companies and local governments are trying to achieve their eradication.


Food Process Modelling

Food Process Modelling

Author: L M M Tijskens

Publisher: Woodhead Publishing

Published: 2001-06-14

Total Pages: 516

ISBN-13: 9781855735651

DOWNLOAD EBOOK

Food process modelling provides an authoritative review of one of the most exciting and influential developments in the food industry. The modelling of food processes allows analysts not only to understand such processes more clearly but also to control them more closely and make predictions about them. Modelling thus aids the search for greater and more consistent food quality. Written by a distinguished international team of experts, Food process modelling covers both the range of modelling techniques and their practical applications across the food chain.


Generalized Linear Models

Generalized Linear Models

Author: Raymond H. Myers

Publisher: John Wiley & Sons

Published: 2012-01-20

Total Pages: 521

ISBN-13: 0470556978

DOWNLOAD EBOOK

Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.


Introduction to Engineering Statistics and Lean Sigma

Introduction to Engineering Statistics and Lean Sigma

Author: Theodore T. Allen

Publisher: Springer Science & Business Media

Published: 2010-04-23

Total Pages: 573

ISBN-13: 1849960003

DOWNLOAD EBOOK

Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.