Residue Currents and Bezout Identities

Residue Currents and Bezout Identities

Author: C.A. Berenstein

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 169

ISBN-13: 3034885601

DOWNLOAD EBOOK

A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equa tions with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpo lation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results.


Harmonic Analysis, Signal Processing, and Complexity

Harmonic Analysis, Signal Processing, and Complexity

Author: Irene Sabadini

Publisher: Springer Science & Business Media

Published: 2008-12-16

Total Pages: 172

ISBN-13: 0817644164

DOWNLOAD EBOOK

* Original articles and survey articles in honor of the sixtieth birthday of Carlos A. Berenstein reflect his diverse research interests from interpolation to residue theory to deconvolution and its applications to issues ranging from optics to the study of blood flow * Contains both theoretical papers in harmonic and complex analysis, as well as more applied work in signal processing * Top-notch contributors in their respective fields


Analysis Meets Geometry

Analysis Meets Geometry

Author: Mats Andersson

Publisher: Birkhäuser

Published: 2017-09-04

Total Pages: 464

ISBN-13: 3319524712

DOWNLOAD EBOOK

This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael’s life as well as his contributions to mathematics, written by friends of Mikael’s who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael’s ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael’s impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.


The Mathematical Legacy of Leon Ehrenpreis

The Mathematical Legacy of Leon Ehrenpreis

Author: Irene Sabadini

Publisher: Springer Science & Business Media

Published: 2012-04-23

Total Pages: 391

ISBN-13: 8847019478

DOWNLOAD EBOOK

Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations were part of the golden era of PDEs, and led him to what is maybe his most important contribution, the Fundamental Principle, which he announced in 1960, and fully demonstrated in 1970. His most recent work, on the other hand, focused on a novel and far reaching understanding of the Radon transform, and offered new insights in integral geometry. Leon Ehrenpreis died in 2010, and this volume collects writings in his honor by a cadre of distinguished mathematicians, many of which were his collaborators.


Microlocal Analysis And Complex Fourier Analysis

Microlocal Analysis And Complex Fourier Analysis

Author: Keiko Fujita

Publisher: World Scientific

Published: 2002-12-12

Total Pages: 339

ISBN-13: 9814487503

DOWNLOAD EBOOK

This book is a collection of original papers on microlocal analysis, Fourier analysis in the complex domain, generalized functions and related topics. Most of the papers originate from the talks given at the conference “Prospects of Generalized Functions” (in November, 2001 at RIMS, Kyoto). Reflecting the fact that the papers, except M Morimoto's one, are dedicated to Mitsuo Morimoto, the subjects considered in this book are interdisciplinary, just as Morimoto's works are. The historical backgrounds of the subjects are also discussed in depth in some contributions. Thus, this book should be valuable not only to the specialists in the fields, but also to those who are interested in the history of modern mathematics such as distributions and hyperfunctions.


Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Author: Eric Grinberg

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 524

ISBN-13: 0821811487

DOWNLOAD EBOOK

This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.


Multidimensional Residue Theory and Applications

Multidimensional Residue Theory and Applications

Author: Alekos Vidras

Publisher: American Mathematical Society

Published: 2023-10-18

Total Pages: 556

ISBN-13: 1470471124

DOWNLOAD EBOOK

Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.


Linear Systems, Signal Processing and Hypercomplex Analysis

Linear Systems, Signal Processing and Hypercomplex Analysis

Author: Daniel Alpay

Publisher: Springer

Published: 2019-08-08

Total Pages: 320

ISBN-13: 3030184846

DOWNLOAD EBOOK

This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.


Sampling, Approximation, and Signal Analysis

Sampling, Approximation, and Signal Analysis

Author: Stephen D. Casey

Publisher: Springer Nature

Published: 2024-01-04

Total Pages: 580

ISBN-13: 3031411307

DOWNLOAD EBOOK

During his long and distinguished career, J. Rowland Higgins (1935-2020) made a substantial impact on many mathematical fields through his work on sampling theory, his deep knowledge of its history, and his service to the community. This volume is a tribute to his work and legacy, featuring chapters written by distinguished mathematicians that explore cutting-edge research in sampling, approximation, signal analysis, and other related areas. An introductory chapter provides a biography of Higgins that explores his rich and unique life, along with a bibliography of his papers; a brief history of the SampTA meetings – of which he was a Founding Member – is also included. The remaining articles are grouped into four sections – classical sampling, theoretical extensions, frame theory, and applications of sampling theory – and explore Higgins’ contributions to these areas, as well as some of the latest developments.


The Bochner-Martinelli Integral and Its Applications

The Bochner-Martinelli Integral and Its Applications

Author: Alexander M. Kytmanov

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 318

ISBN-13: 303489094X

DOWNLOAD EBOOK

The Bochner-Martinelli integral representation for holomorphic functions or'sev eral complex variables (which has already become classical) appeared in the works of Martinelli and Bochner at the beginning of the 1940's. It was the first essen tially multidimensional representation in which the integration takes place over the whole boundary of the domain. This integral representation has a universal 1 kernel (not depending on the form of the domain), like the Cauchy kernel in e . However, in en when n > 1, the Bochner-Martinelli kernel is harmonic, but not holomorphic. For a long time, this circumstance prevented the wide application of the Bochner-Martinelli integral in multidimensional complex analysis. Martinelli and Bochner used their representation to prove the theorem of Hartogs (Osgood Brown) on removability of compact singularities of holomorphic functions in en when n > 1. In the 1950's and 1960's, only isolated works appeared that studied the boundary behavior of Bochner-Martinelli (type) integrals by analogy with Cauchy (type) integrals. This study was based on the Bochner-Martinelli integral being the sum of a double-layer potential and the tangential derivative of a single-layer potential. Therefore the Bochner-Martinelli integral has a jump that agrees with the integrand, but it behaves like the Cauchy integral under approach to the boundary, that is, somewhat worse than the double-layer potential. Thus, the Bochner-Martinelli integral combines properties of the Cauchy integral and the double-layer potential.