Research Directions in Number Theory

Research Directions in Number Theory

Author: Jennifer S. Balakrishnan

Publisher: Springer

Published: 2019-08-01

Total Pages: 208

ISBN-13: 3030194787

DOWNLOAD EBOOK

These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.


Directions in Number Theory

Directions in Number Theory

Author: Ellen E. Eischen

Publisher: Springer

Published: 2016-09-26

Total Pages: 351

ISBN-13: 3319309765

DOWNLOAD EBOOK

Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students.


Women in Numbers Europe

Women in Numbers Europe

Author: Marie José Bertin

Publisher: Springer

Published: 2015-09-22

Total Pages: 215

ISBN-13: 331917987X

DOWNLOAD EBOOK

Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.


Analytic Number Theory

Analytic Number Theory

Author: Henryk Iwaniec

Publisher: American Mathematical Soc.

Published: 2021-10-14

Total Pages: 615

ISBN-13: 1470467704

DOWNLOAD EBOOK

Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.


Number Theory Meets Wireless Communications

Number Theory Meets Wireless Communications

Author: Victor Beresnevich

Publisher: Springer Nature

Published: 2021-01-08

Total Pages: 281

ISBN-13: 3030613038

DOWNLOAD EBOOK

This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.


An Invitation to Modern Number Theory

An Invitation to Modern Number Theory

Author: Steven J. Miller

Publisher: Princeton University Press

Published: 2020-07-21

Total Pages: 526

ISBN-13: 0691215979

DOWNLOAD EBOOK

In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.


Dynamics, Geometry, Number Theory

Dynamics, Geometry, Number Theory

Author: David Fisher

Publisher: University of Chicago Press

Published: 2022-02-07

Total Pages: 573

ISBN-13: 022680402X

DOWNLOAD EBOOK

"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--


Research Directions in Number Theory

Research Directions in Number Theory

Author: Alina Bucur

Publisher: Springer

Published: 2024-04-20

Total Pages: 0

ISBN-13: 9783031516764

DOWNLOAD EBOOK

This is the fifth proceedings volume published under the Women in Numbers umbrella. The WIN workshops and their proceedings volumes are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields. The volume contains research articles in the mathematical area of number theory, written by teams of scholars at all levels in the field. More information about the network, its goals and purpose, past and future conferences, and past proceedings volumes, can be found on the WIN website. This volume contains research outcomes and results produced by the collaborative research groups created under the Women in Numbers V workshop, the 5th in its series. The actual workshop was to take place in 2020 at the Banff International Research Station in Banff, Canada, but could not take place onsite due to COVID. The associated research groups, each consisting of 1-2 leaders and 2-4 junior researchers, were formed nevertheless and their collaborations went ahead in purely virtual form, as well as other papers by author teams for which at least 50% of the authors identify as women or gender minorities. These contributions include original research and survey articles in a wide variety of subareas within number theory. The former present new cutting-edge research that will be of interest to experts in the field, to the benefit of their own research. The survey articles serve as an accessible introduction for graduate students and other readers to areas of number theory that may be outside their area of expertise.


Fractal Geometry and Number Theory

Fractal Geometry and Number Theory

Author: Michel L. Lapidus

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 277

ISBN-13: 1461253144

DOWNLOAD EBOOK

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.