This textbook presents concise chapters written by internationally respected experts on various important aspects of cancer-associated metabolism, offering a comprehensive overview of the central features of this exciting research field. The discovery that tumor cells display characteristic alterations of metabolic pathways has significantly changed our understanding of cancer: while the first description of tumor-specific changes in cellular energetics was published more than 90 years ago, the causal significance of this observation for the pathogenesis of cancer was only discovered in the post-genome era. The first 10 years of the twenty-first century were characterized by rapid advances in our grasp of the functional role of cancer-specific metabolism as well as the underlying molecular pathways. Various unanticipated interrelations between metabolic alterations and cancer-driving pathways were identified and currently await translation into diagnostic and therapeutic applications. Yet the speed, quantity, and complexity of these new discoveries make it difficult for researchers to keep up to date with the latest developments, an issue this book helps to remedy.
Several fundamentally important questions form the basis for this book. What are the relationships between tumour formation and tumour pH? What are the effects of tumour pH and hypoxia on carcinogenesis or tumorigenesis? What are the therapeutic consequences of tumour pH? It is hypothesised that low extracellular pH is not only an important consequence of tumour growth but may also promote further tumorigenic transformation. Furthermore, in vitro studies suggest that low pH strongly affects the efficacy of chemo- and radiotherapy. Better understanding of the influence of pH on tumour growth, coupled with manipulation of the pH of the tumour microenvironment, may lead to the development of more effective therapies.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
This volume explores the various methods used to study tertiary lymphoid structures (TLS) in pathological situations. Pre-clinical models are also discussed in detail to show how TLS structure, development, and maintenance can be targeted and studied in vivo. The chapters in this book cover topics such as humans and mice; strategies to quantify TLS in order to use it in stained tissue sections; classifying a gene signature form fixed and paraffin-embedded tissues; and development of murine inflammatory models to help look at TLS in the context of infection or malignancy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Tertiary Lymphoid Structures: Methods and Protocols is a valuable resource that increases the reader’s knowledge on immune functions and how they will pave the way to future therapeutic applications.
The immune system harbors great potential for controlling and eliminating tumors. Recent developments in the field of immuno-oncology has led to unprecedented clinical benefits for a broad spectrum of solid tumors. However, immunotherapy (IT) approaches currently have several limitations including (i) low response rate; (ii) development of resistance and (iii) causing severe immune-related adverse effects (IrAEs), which underline the importance of adequate patient selection. Importantly, IT holds promising synergistic potential when combined with standard-of-care chemotherapy, radiotherapy (RT) and anti-angiogenic therapy (AAT) as part of multi-modal oncologic treatment regimes. Published data suggest that there are potential synergy between RT and AAT, which ultimately could help potentiate the response to IT. However, the complex interactions between RT and IT and/or AAT remain poorly understood. Many research questions including optimal timing, scheduling and dosing, as well as patient selection and side effects of combined therapy approaches, remain to be addressed. This Research Topic aims to give a comprehensive overview of the current field with particular emphasis on the future outlook of RT and AAT as complementary approaches to improve IT in solid tumors.
The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.
Written and edited by internationally recognised leaders in the field, the new edition of the Oxford Textbook of Oncology has been fully revised and updated, taking into consideration the advancements in each of the major therapeutic areas, and representing the multidisciplinary management of cancer. Structured in six sections, the book provides an accessible scientific basis to the key topics of oncology, examining how cancer cells grow and function, as well as discussing the aetiology of cancer, and the general principles governing modern approaches to oncology treatment. The book examines the challenges presented by the treatment of cancer on a larger scale within population groups, and the importance of recognising and supporting the needs of individual patients, both during and after treatment. A series of disease-oriented, case-based chapters, ranging from acute leukaemia to colon cancer, highlight the various approaches available for managing the cancer patient, including the translational application of cancer science in order to personalise treatment. The advice imparted in these cases has relevance worldwide, and reflects a modern approach to cancer care. The Oxford Textbook of Oncology provides a comprehensive account of the multiple aspects of best practice in the discipline, making it an indispensable resource for oncologists of all grades and subspecialty interests.
This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.