Integral Representation Theory

Integral Representation Theory

Author: Jaroslav Lukeš

Publisher: Walter de Gruyter

Published: 2010

Total Pages: 732

ISBN-13: 3110203200

DOWNLOAD EBOOK

This monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications


The Isometric Theory of Classical Banach Spaces

The Isometric Theory of Classical Banach Spaces

Author: H.E. Lacey

Publisher: Springer

Published: 2011-12-07

Total Pages: 0

ISBN-13: 9783642657641

DOWNLOAD EBOOK

The purpose of this book is to present the main structure theorems in the isometric theory of classical Banach spaces. Elements of general topology, measure theory, and Banach spaces are assumed to be familiar to the reader. A classical Banach space is a Banach space X whose dual space is linearly isometric to Lp(j1, IR) (or Lp(j1, CC) in the complex case) for some measure j1 and some 1 ~ p ~ 00. If 1


Optimal Domain and Integral Extension of Operators

Optimal Domain and Integral Extension of Operators

Author: S. Okada

Publisher: Springer Science & Business Media

Published: 2008-09-09

Total Pages: 406

ISBN-13: 3764386487

DOWNLOAD EBOOK

This book deals with the analysis of linear operators from a quasi-Banach function space into a Banach space. The central theme is to extend the operator to as large a (function) space as possible, its optimal domain, and to take advantage of this in analyzing the original operator. Most of the material appears in print for the first time. The book has an interdisciplinary character and is aimed at graduates, postgraduates, and researchers in modern operator theory.


An Introduction to Banach Space Theory

An Introduction to Banach Space Theory

Author: Robert E. Megginson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 613

ISBN-13: 1461206030

DOWNLOAD EBOOK

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.


Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Author: Haim Brezis

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 600

ISBN-13: 0387709142

DOWNLOAD EBOOK

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.


Stochastic Processes

Stochastic Processes

Author: Malempati M. Rao

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 656

ISBN-13: 1475765967

DOWNLOAD EBOOK

The material accumulated and presented in this volume can be ex plained easily. At the start of my graduate studies in the early 1950s, I Grenander's (1950) thesis, and was much attracted to the came across entire subject considered there. I then began preparing for the neces sary mathematics to appreciate and possibly make some contributions to the area. Thus after a decade of learning and some publications on the way, I wanted to write a modest monograph complementing Grenander's fundamental memoir. So I took a sabbatical leave from my teaching position at the Carnegie-Mellon University, encouraged by an Air Force Grant for the purpose, and followed by a couple of years more learning opportunity at the Institute for Advanced Study to complete the project. As I progressed, the plan grew larger needing a substantial background material which was made into an independent initial volume in (1979). In its preface I said: "My intension was to present the following material as the first part of a book treating the In ference Theory of stochastic processes, but the latter account has now receded to a distant future," namely for two more decades! Meanwhile, a much enlarged second edition of that early work has appeared (1995), and now I am able to present the main part of the original plan.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 639

ISBN-13: 9401512795

DOWNLOAD EBOOK

This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.


An Introduction to Functional Analysis

An Introduction to Functional Analysis

Author: James C. Robinson

Publisher: Cambridge University Press

Published: 2020-03-12

Total Pages: 421

ISBN-13: 0521899648

DOWNLOAD EBOOK

Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.