Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
Schwarzian derivatives and cylinder maps by A. Bonifant and J. Milnor Holomorphic dynamics: Symbolic dynamics and self-similar groups by V. Nekrashevych Are there critical points on the boundaries of mother hedgehogs? by D. K. Childers Finiteness for degenerate polynomials by L. DeMarco Cantor webs in the parameter and dynamical planes of rational maps by R. L. Devaney Simple proofs of uniformization theorems by A. A. Glutsyuk The Yoccoz combinatorial analytic invariant by C. L. Petersen and P. Roesch Bifurcation loci of exponential maps and quadratic polynomials: Local connectivity, triviality of fibers, and density of hyperbolicity by L. Rempe and D. Schleicher Rational and transcendental Newton maps by J. Ruckert Newton's method as a dynamical system: Efficient root finding of polynomials and the Riemann $\zeta$ function by D. Schleicher The external boundary of $M_2$ by V. Timorin Renormalization: Renormalization of vector fields by H. Koch Renormalization of arbitrary weak noises for one-dimensional critical dynamical systems: Summary of results and numerical explorations by O. Diaz-Espinosa and R. de la Llave KAM for the nonlinear Schrodinger equation--A short presentation by H. L. Eliasson and S. B. Kuksin Siegel disks and renormalization fixed points by M. Yampolsky
This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.
This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics · Features recent developments on large deviations for higher-dimensional maps, a study of measures resisting multifractal analysis and a overview of complex Kleninan groups · Includes thorough review of recent findings that emphasize new development prospects
Provides the first systematic study of geometry and topology of locally symmetric rank one manifolds and dynamics of discrete action of their fundamental groups. In addition to geometry and topology, this study involves several other areas of Mathematics – from algebra of varieties of groups representations and geometric group theory, to geometric analysis including classical questions from function theory.
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.