Reliability Engineering and Computational Intelligence for Complex Systems

Reliability Engineering and Computational Intelligence for Complex Systems

Author: Coen van Gulijk

Publisher: Springer Nature

Published: 2023-09-23

Total Pages: 224

ISBN-13: 3031409973

DOWNLOAD EBOOK

This book offers insight into the current issues of the merger between reliability engineering and computational intelligence. The intense development of information technology allows for designing more complex systems as well as creating more detailed models of real-world systems which forces traditional reliability engineering approaches based on Boolean algebra, probability theory, and statistics to embrace the world of data science. The works deal with methodological developments as well as applications in the development of safe and reliable systems in various kinds of distribution networks, in the development of highly reliable healthcare systems, in finding weaknesses in systems with the human factor, or in reliability analysis of large information systems and other software solutions. In this book, experts from various fields of reliability engineering and computational intelligence present their view on the risks, the opportunities and the synergy between reliability engineering and computational intelligence that have been developed separately but in recent years have found a way to each other. The topics addressed include the latest advances in computing technology to improve the real lives of millions of people by increasing safety and reliability of various types of real-life systems by increasing the availability of software services, reducing the accident rate of means of transport, developing high reliable patient-specific health care, or generally, save cost and increase efficiency in the work and living environment. Though this book, the reader has access to professionals and researchers in the fields of reliability engineering and computational intelligence that share their experience in merging the two as well as an insight into the latest methods, concerns and application domains.


Reliability Engineering and Computational Intelligence

Reliability Engineering and Computational Intelligence

Author: Coen van Gulijk

Publisher: Springer Nature

Published: 2021-08-06

Total Pages: 307

ISBN-13: 3030745562

DOWNLOAD EBOOK

Computational intelligence is rapidly becoming an essential part of reliability engineering. This book offers a wide spectrum of viewpoints on the merger of technologies. Leading scientists share their insights and progress on reliability engineering techniques, suitable mathematical methods, and practical applications. Thought-provoking ideas are embedded in a solid scientific basis that contribute to the development the emerging field. This book is for anyone working on the most fundamental paradigm-shift in resilience engineering in decades. Scientists benefit from this book by gaining insight in the latest in the merger of reliability engineering and computational intelligence. Businesses and (IT) suppliers can find inspiration for the future, and reliability engineers can use the book to move closer to the cutting edge of technology.


Complex System Maintenance Handbook

Complex System Maintenance Handbook

Author: Khairy Ahmed Helmy Kobbacy

Publisher: Springer Science & Business Media

Published: 2008-04-18

Total Pages: 648

ISBN-13: 1848000103

DOWNLOAD EBOOK

This utterly comprehensive work is thought to be the first to integrate the literature on the physics of the failure of complex systems such as hospitals, banks and transport networks. It has chapters on particular aspects of maintenance written by internationally-renowned researchers and practitioners. This book will interest maintenance engineers and managers in industry as well as researchers and graduate students in maintenance, industrial engineering and applied mathematics.


Intelligent Engineering Systems and Computational Cybernetics

Intelligent Engineering Systems and Computational Cybernetics

Author: J.A. Tenreiro Machado

Publisher: Springer Science & Business Media

Published: 2008-12-18

Total Pages: 438

ISBN-13: 1402086784

DOWNLOAD EBOOK

Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of “modelling accuracy” they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it. A further important component of machine intelligence is a kind of “structural uniformity” giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This “learning ability” is a key element of machine intelligence. The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application. Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.


Computational Intelligence in Reliability Engineering

Computational Intelligence in Reliability Engineering

Author: Gregory Levitin

Publisher: Springer Science & Business Media

Published: 2006-10-25

Total Pages: 428

ISBN-13: 3540373713

DOWNLOAD EBOOK

This volume includes chapters presenting applications of different metaheuristics in reliability engineering, including ant colony optimization, great deluge algorithm, cross-entropy method and particle swarm optimization. It also presents chapters devoted to cellular automata and support vector machines, and applications of artificial neural networks, a powerful adaptive technique that can be used for learning, prediction and optimization. Several chapters describe aspects of imprecise reliability and applications of fuzzy and vague set theory.


Reliability and Availability Engineering

Reliability and Availability Engineering

Author: Kishor S. Trivedi

Publisher: Cambridge University Press

Published: 2017-08-03

Total Pages: 729

ISBN-13: 1108509002

DOWNLOAD EBOOK

Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.


Modeling And Analysis Of Dependable Systems: A Probabilistic Graphical Model Perspective

Modeling And Analysis Of Dependable Systems: A Probabilistic Graphical Model Perspective

Author: Luigi Portinale

Publisher: World Scientific

Published: 2015-06-09

Total Pages: 270

ISBN-13: 9814612057

DOWNLOAD EBOOK

The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.


Reliability Management and Engineering

Reliability Management and Engineering

Author: Harish Garg

Publisher: CRC Press

Published: 2020-06-15

Total Pages: 301

ISBN-13: 1000067688

DOWNLOAD EBOOK

Reliability technology plays an important role in the present era of industrial growth, optimal efficiency, and reducing hazards. This book provides insights into current advances and developments in reliability engineering, and the research presented is spread across all branches. It discusses interdisciplinary solutions to complex problems using different approaches to save money, time, and manpower. It presents methodologies of coping with uncertainty in reliability optimization through the usage of various techniques such as soft computing, fuzzy optimization, uncertainty, and maintenance scheduling. Case studies and real-world examples are presented along with applications that can be used in practice. This book will be useful to researchers, academicians, and practitioners working in the area of reliability and systems assurance engineering. Provides current advances and developments across different branches of engineering. Reviews and analyses case studies and real-world examples. Presents applications to be used in practice. Includes numerous examples to illustrate theoretical results.


Mathematics Applied in Information Systems

Mathematics Applied in Information Systems

Author: Mangey Ram

Publisher: Bentham Science Publishers

Published: 2018-09-12

Total Pages: 299

ISBN-13: 1681087138

DOWNLOAD EBOOK

Recent developments in information science and technology have been possible due to original and timely research contributions containing new results in various fields of applied mathematics. It is also true that advances in information science create opportunities for developing mathematical models further.


Stochastic Models in Reliability Engineering

Stochastic Models in Reliability Engineering

Author: Lirong Cui

Publisher: CRC Press

Published: 2020-07-29

Total Pages: 464

ISBN-13: 1000094596

DOWNLOAD EBOOK

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, experiments, and applied probability and statistics.