The Reidemeister Torsion of 3-Manifolds

The Reidemeister Torsion of 3-Manifolds

Author: Liviu I. Nicolaescu

Publisher: Walter de Gruyter

Published: 2008-08-22

Total Pages: 264

ISBN-13: 311019810X

DOWNLOAD EBOOK

This is a state-of-the-art introduction to the work of Franz Reidemeister, Meng Taubes, Turaev, and the author on the concept of torsion and its generalizations. Torsion is the oldest topological (but not with respect to homotopy) invariant that in its almost eight decades of existence has been at the center of many important and surprising discoveries. During the past decade, in the work of Vladimir Turaev, new points of view have emerged, which turned out to be the "right ones" as far as gauge theory is concerned. The book features mostly the new aspects of this venerable concept. The theoretical foundations of this subject are presented in a style accessible to those, who wish to learn and understand the main ideas of the theory. Particular emphasis is upon the many and rather diverse concrete examples and techniques which capture the subleties of the theory better than any abstract general result. Many of these examples and techniques never appeared in print before, and their choice is often justified by ongoing current research on the topology of surface singularities. The text is addressed to mathematicians with geometric interests who want to become comfortable users of this versatile invariant.


Collected Papers of John Milnor

Collected Papers of John Milnor

Author: John Willard Milnor

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 323

ISBN-13: 0821848755

DOWNLOAD EBOOK

This volume contains papers of one of the best modern geometers and topologists, John Milnor, on various topics related to the notion of the fundamental group. The volume contains sixteen papers divided into four parts: Knot theory, Free actions on spheres, Torsion, and Three-dimensional manifolds. Each part is preceded by an introduction containing the author's comments on further development of the subject. Although some of the papers were written quite a while ago, they appear more modern than many of today's publications. Milnor's excellent, clear, and laconic style makes the book a real treat. This volume is highly recommended to a broad mathematical audience, and, in particular, to young mathematicians who will certainly benefit from their acquaintance with Milnor's mode of thinking and writing.


Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps

Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps

Author: Pierre Albin

Publisher: American Mathematical Soc.

Published: 2021-06-21

Total Pages: 126

ISBN-13: 1470444224

DOWNLOAD EBOOK

Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.


Higher Franz-Reidemeister Torsion

Higher Franz-Reidemeister Torsion

Author: Kiyoshi Igusa

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 394

ISBN-13: 0821831704

DOWNLOAD EBOOK

This work is devoted to the theory of topological higher Franz-Reidemeister torsion in $K$-theory. The author defines the higher Franz-Reidemeister torsion based on Volodin's $K$-theory and Borel's regulator map. He describes its properties and generalizations and studies the relation between the higher Franz-Reidemeister torsion and other torsions used in $K$-theory: Whitehead torsion and Ray-Singer torsion. He also presents methods of computing higher Franz-Reidemeister torsion, illustrates them with numerous examples, and describes various applications of higher Franz-Reidemeister torsion, particularly for the study of homology of mapping class groups. Packed with up-to-date information, the book should provide a useful research and reference tool for specialists working in algebraic topology and $K$-theory.


A Course on Surgery Theory

A Course on Surgery Theory

Author: Stanley Chang

Publisher: Princeton University Press

Published: 2021-01-26

Total Pages: 472

ISBN-13: 0691200351

DOWNLOAD EBOOK

An advanced treatment of surgery theory for graduate students and researchers Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community.


Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology

Author: James F. Davis

Publisher: American Mathematical Society

Published: 2023-05-22

Total Pages: 385

ISBN-13: 1470473682

DOWNLOAD EBOOK

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.


Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology

Author: James F. Davis and Paul Kirk

Publisher: American Mathematical Soc.

Published:

Total Pages: 388

ISBN-13: 9780821872208

DOWNLOAD EBOOK

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic andgeometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, someknowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstructiontheory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to presentproofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, andhomological algebra. The exposition in the text is clear; special cases are presented over complex general statements.


L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory

Author: Wolfgang Lück

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 604

ISBN-13: 3662046873

DOWNLOAD EBOOK

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.


Handbook of Algebraic Topology

Handbook of Algebraic Topology

Author: I.M. James

Publisher: Elsevier

Published: 1995-07-18

Total Pages: 1336

ISBN-13: 0080532985

DOWNLOAD EBOOK

Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.