Asymptotics for Dissipative Nonlinear Equations

Asymptotics for Dissipative Nonlinear Equations

Author: Nakao Hayashi

Publisher: Springer Science & Business Media

Published: 2006-04-21

Total Pages: 570

ISBN-13: 3540320598

DOWNLOAD EBOOK

Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.


Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2006-11-02

Total Pages: 538

ISBN-13: 9781584886631

DOWNLOAD EBOOK

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.


Partial Differential Equations

Partial Differential Equations

Author: Avner Friedman

Publisher: Courier Corporation

Published: 2008-11-24

Total Pages: 276

ISBN-13: 0486469190

DOWNLOAD EBOOK

Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Evolution Equations

Evolution Equations

Author: Gisele Ruiz Goldstein

Publisher: CRC Press

Published: 2003-06-24

Total Pages: 442

ISBN-13: 9780824709754

DOWNLOAD EBOOK

Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.


Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors

Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors

Author: Yuming Qin

Publisher: Springer Science & Business Media

Published: 2008-11-25

Total Pages: 472

ISBN-13: 3764388145

DOWNLOAD EBOOK

This book presents recent results concerning the global existence in time, the large-time behavior, decays of solutions and the existence of global attractors for nonlinear parabolic-hyperbolic coupled systems of evolutionary partial differential equations.


Strongly Coupled Parabolic and Elliptic Systems

Strongly Coupled Parabolic and Elliptic Systems

Author: Dung Le

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-11-05

Total Pages: 198

ISBN-13: 3110608766

DOWNLOAD EBOOK

Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity


A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations

Author: Victor A. Galaktionov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 388

ISBN-13: 1461220505

DOWNLOAD EBOOK

* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.