The mission of the book series, Research in Science Education, is to provide a comprehensive view of current and emerging knowledge, research strategies, and policy in specific professional fields of science education. This series would present currently unavailable, or difficult to gather, materials from a variety of viewpoints and sources in a usable and organized format. Each volume in the series would present a juried, scholarly, and accessible review of research, theory, and/or policy in a specific field of science education, K-16. Topics covered in each volume would be determined by present issues and trends, as well as generative themes related to current research and theory. Published volumes will include empirical studies, policy analysis, literature reviews, and positing of theoretical and conceptual bases.
An emerging body of research suggests that a set of broad "21st century skills"-such as adaptability, complex communication skills, and the ability to solve non-routine problems-are valuable across a wide range of jobs in the national economy. However, the role of K-12 education in helping students learn these skills is a subject of current debate. Some business and education groups have advocated infusing 21st century skills into the school curriculum, and several states have launched such efforts. Other observers argue that focusing on skills detracts attention from learning of important content knowledge. To explore these issues, the National Research Council conducted a workshop, summarized in this volume, on science education as a context for development of 21st century skills. Science is seen as a promising context because it is not only a body of accepted knowledge, but also involves processes that lead to this knowledge. Engaging students in scientific processes-including talk and argument, modeling and representation, and learning from investigations-builds science proficiency. At the same time, this engagement may develop 21st century skills. Exploring the Intersection of Science Education and 21st Century Skills addresses key questions about the overlap between 21st century skills and scientific content and knowledge; explores promising models or approaches for teaching these abilities; and reviews the evidence about the transferability of these skills to real workplace applications.
This volume addresses the broad spectrum of challenges confronting today?s universities. Elkana and Kl”pper question the very idea and purposes of universities, especially as viewed through curriculum?what is taught, and pedagogy?how it is taught. The reforms recommended in the book focus on undergraduate or bachelor degree programs in all areas of study, from the humanities and social sciences to the natural sciences, technical fields, as well as law, medicine, and other professions. The core thesis of this book rests on the emergence of a ?New Enlightenment. This will require a revolution in curriculum and teaching methods in order to translate the academic philosophy of global contextualism into universal practice or application. Are universities willing to revamp teaching in order to foster critical thinking that would serve students their entire lives? This book calls for universities to restructure administratively to become truly integrated, rather than remaining collections of autonomous agencies more committed to competition among themselves than cooperation in the larger interest of learning. ÿ
Biological sciences have been revolutionized, not only in the way research is conductedâ€"with the introduction of techniques such as recombinant DNA and digital technologyâ€"but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry.
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
The goal of this book is to introduce a reader to a new philosophy of teaching and learning physics - Investigative Science Learning Environment, or ISLE (pronounced as a small island). ISLE is an example of an "intentional" approach to curriculum design and learning activities (MacMillan and Garrison 1988 A Logical Theory of Teaching: Erotetics and Intentionality). Intentionality means that the process through which the learning occurs is as crucial for learning as the final outcome or learned content. In ISLE, the process through which students learn mirrors the practice of physics.
Via 100 entries or 'mini-chapters,' the SAGE 21st Century Reference Series volumes on Education will highlight the most important topics, issues, questions, and debates any student obtaining a degree in the field of education ought to have mastered for effectiveness in the 21st Century.
"This volume will examine research, theory, and policy related to reform issues and events surrounding the development, status, influence, and future of active laboratory type experiences and the use of technology in science teaching. What is the role of practical laboratory work and active learning in science classroom teaching in the 21st century? What has been the response of teachers to the introduction of technology in science teaching since the late 1980's? What are the results of the use of the laboratory and introduction of technology on teachers, classrooms, and students as measured through the national science standards? What practices are supported by research? What works in K16 settings?"--PUBLISHER'S WEBSITE.
Talking about Leaving Revisited discusses findings from a five-year study that explores the extent, nature, and contributory causes of field-switching both from and among “STEM” majors, and what enables persistence to graduation. The book reflects on what has and has not changed since publication of Talking about Leaving: Why Undergraduates Leave the Sciences (Elaine Seymour & Nancy M. Hewitt, Westview Press, 1997). With the editors’ guidance, the authors of each chapter collaborate to address key questions, drawing on findings from each related study source: national and institutional data, interviews with faculty and students, structured observations and student assessments of teaching methods in STEM gateway courses. Pitched to a wide audience, engaging in style, and richly illustrated in the interviewees’ own words, this book affords the most comprehensive explanatory account to date of persistence, relocation and loss in undergraduate sciences. Comprehensively addresses the causes of loss from undergraduate STEM majors—an issue of ongoing national concern. Presents critical research relevant for nationwide STEM education reform efforts. Explores the reasons why talented undergraduates abandon STEM majors. Dispels popular causal myths about why students choose to leave STEM majors. This volume is based upon work supported by the Alfred P. Sloan Foundation Award No. 2012-6-05 and the National Science Foundation Award No. DUE 1224637.