Under the guidance of the German Federal Institute for Materials Research (BAM), the standards for fabrication and application of reference materials are presented here in comprehensive form. The areas covered are analytical chemistry, materials science, environmental analysis, clinical and forensic toxicological analysis, and gas and food analysis. A standard reference for every analytical laboratory.
There are many academic references describing how RMs are made, but few that explain why they are used, how they should be used and what happens when they are not properly used. In order to fill this gap, the editors have taken the contributions of more than thirty RM practitioners to produce a highly readable text organized in nine chapters. Starting with an introduction to historical, theoretical and technical requirements, the book goes on to examine all aspects of RM production from planning, preparation through analysis to certification, reviews recent development areas, RMs for life analysis and some important general application fields, considers the proper usage of RMs, gives advice on availability and sources of information and lastly looks at future trends and needs for RMs. This book is intended to be a single point of information that both guides the reader through the use of RMs and serves as a primary reference source. It should be on the reading list of anyone working in an analytical laboratory and be found on the library shelf of all analytical chemical laboratories.
The participation in interlaboratory studies and the use of Certified Reference Materials (CRMs) are widely recognised tools for the verification of the accuracy of analytical measurements and they form an integral part of quality control systems used by many laboratories, e.g. in accreditation schemes. As a response to the need to improve the quality of environmental analysis, the European Commission has been active in the past fifteen years, through BCR activity (now renamed Standards, Measurements and Testing Programme) in the organisation of series of interlaboratory studies involving expert laboratories in various analytical fields (inorganic, trace organic and speciation analysis applied to a wide variety of environmental matrices). The BCR and its successor have the task of helping European laboratories to improve the quality of measurements in analytical sectors which are vital for the European Union (biomedical, agriculture, food, environment and industry); these are most often carried out in support of EC regulations, industrial needs, trade, monitoring activities (including environment, agriculture, health and safety) and, more generally, when technical difficulties hamper a good comparability of data among EC laboratories. The collaborative projects carried out so far have placed the BCR in the position of second world CRM producer (after NIST in the USA).Interlaboratory Studies and Certification of Reference Materials for Environmental Analysis gives an account of the importance of reference materials for the quality control of environmental analysis and describes in detail the procedures followed by BCR to prepare environmental reference materials, including aspects related to sampling, stabilization, homogenisation, homogeneity and stability testing, establishment of reference (or certified) values, and use of reference materials. Examples of environmental CRMs produced by BCR within the last 15 years are given, which represent more than 70 CRMs covering different types of materials (plants, biological materials, waters, sediments, soils and sludges, coals, ash and dust materials) certified for a range of chemical parameters (major and trace elements, chemical species, PAHs, PCBs, pesticides and dioxins).The final section of the book describes how to organise improvement schemes for the evaluation method and/or laboratory performance. Examples of interlaboratory studies (learning scheme, proficiency testing and intercomparison in support to prenormative research) are also given.
A comprehensive guide to smart materials and how they are used in sample preparation, analytical processes, and applications This comprehensive, two-volume handbook provides detailed information on the present state of new materials tailored for selective sample preparation and the legal frame and environmental side effects of the use of smart materials for sample preparation in analytical chemistry, as well as their use in the analytical processes and applications. It covers both methodological and applied analytical aspects, relating to the development and application of new materials for solid-phase extraction (SPE) and solid-phase microextraction (SPME), their use in the different steps and techniques of the analytical process, and their application in specific fields such as water, food, air, pharmaceuticals, clinical sciences and forensics. Every chapter in Handbook of Smart Materials in Analytical Chemistry is written by experts in the field to provide a comprehensive picture of the present state of this key area of analytical sciences and to summarize current applications and research literature in a critical way. Volume 1 covers New Materials for Sample Preparation and Analysis. Volume 2 handles Analytical Processes and Applications. Focuses on the development and applications of smart materials in analytical chemistry Covers both, methodological and applied analytical aspects, for the development of new materials and their use in the different steps and techniques of the analytical process and their application in specific fields Features applications in key areas including water, air, environment, pharma, food, forensic, and clinical Presents the available tools for the use of new materials suitable to aid recognition process to the sample preparation and analysis A key resource for analytical chemists, applied laboratories, and instrument companies Handbook of Smart Materials in Analytical Chemistry, 2V Set is an excellent reference book for specialists and advanced students in the areas of analytical chemistry, including both research and application environments.
Quality assurance and accreditation in analytical chemistry laboratories is an important issue on the national and international scale. The book presents currently used methods to assure the quality of analytical results and it describes accreditation procedures for the mutual recognition of these results. The book describes in detail the accreditation systems in 13 European countries and the present situation in the United States of America. The editor also places high value on accreditation and certification practice and on the relevant legislation in Europe. The appendix lists invaluable information on important European accreditation organizations.
This book is an updated, completely revised version of a previous volume in this series entitled: ENVIRONMENTAL ANALYSIS -- Techniques, applications and quality assurance. The book treats different aspects of environmental analysis such as sample handling and analytical techniques, the applications to trace analysis of pollutants (mainly organic compounds), and quality assurance aspects, including the use of certified reference materials for the quality control of the whole analytical process. New analytical techniques are presented that have been developed significantly over the last 6 years, like solid phase microextraction, microwave-assisted extraction, liquid chromatography-mass spectrometric methods, immunoassays, and biosensors. The book is divided into four sections. The first describes field sampling techniques and sample preparation in environmental matrices: water, soil, sediment and biota. The second section covers the application areas which are either based on techniques, like the use of gas chromatography-atomic emission detection, immunoassays, or coupled-column liquid chromatography, or on specific application areas, like chlorinated compounds, pesticides, phenols, mycotoxins, phytotoxins, radionuclides, industrial effluents and wastes, including mine waste. Validation and quality assurance are described in the third section, together with the interpretation of environmental data using advanced chemometric techniques. The final section reports the use of somewhat advanced analytical methods, usually more expensive, less routinely used or less developed, for the determination of pollutants.
This best-selling title both in German and English is now enhanced by a new chapter on the important topical subject of measurement uncertainty, plus a CD-ROM with interactive examples in the form of Excel-spreadsheets. These allow readers to gain an even better comprehension of the statistical procedures for quality assurance while also incorporating their own data. Following an introduction, the text goes on to elucidate the 4-phase model of analytical quality assurance: establishing a new analytical process, preparative quality assurance, routine quality assurance and external analytical quality assurance. Besides updating the relevant references, the authors took great care to incorporate the latest international standards in the field.
Principles of Analytical Chemistry gives readers a taste of what the field is all about. Using keywords of modern analytical chemistry, it constructs an overview of the discipline, accessible to readers pursuing different scientific and technical studies. In addition to the extremely easy-to-understand presentation, practical exercises, questions, and lessons expound a large number of examples.
Metrological traceability of chemical measurement results means the establishment of a relation to metrological stated references through an unbroken chain of comparisons. This volume collects 56 outstanding papers on the topic, mostly published in the period 2000-2003 in the journal "Accreditation and Quality Assurance". They provide the latest understanding, and possibly the rationale why it is important to integrate the concept of metrological traceability including suitable measurement standards such as certified reference materials, into the standard measurement procedures of every analytical laboratory. In addition, this anthology considers the benefits to both the analytical laboratory and the user of the measurement results.
Describes general aspects of metals in clinical chemistry focusing not only on the physiology of metal ions and their analytical determination in biological materials, but also on their geochemical distribution, technical uses and environmental effects.