Reduction of Implementation Complexity in MIMO-OFDM Decoding for V-BLAST Architecture

Reduction of Implementation Complexity in MIMO-OFDM Decoding for V-BLAST Architecture

Author: Tariq Nanji

Publisher:

Published: 2010

Total Pages: 67

ISBN-13:

DOWNLOAD EBOOK

This dissertation documents alternative designs of the Zero Forcing decoding algorithm with Successive Interference Cancellation (ZF-SIC) for use in Vertical Bell Laboratories Layered Space Time Architecture (V-BLAST) Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems, in an effort to reduce the computational complexity of the receiver. The development of a wireless platform utilizing this architecture intended for use in an indoor wireless multipath environment was created to analyze the multipath environment. This implementation is the result of efforts from several individuals within the CST group. My contributions are documented in this dissertation. In order to obtain channel state information (CSI), a training sequence is sent with each incoming frame. A pseudo-inverse operation is performed on the channel matrix and applied to each OFDM symbol that was received. Performing this operation on each tone and across each OFDM symbol is computationally inefficient in a MIMO configuration. If the number of pseudo-inverses can be reduced while maintaining acceptable levels of bit error, the processing time of each frame can be decreased. Traditionally, tests of the performance of ZF-SIC have been conducted with simulations modelling a multipath channel. In this thesis, CSI is observed using an open loop platform developed for MIMO-OFDM communications. The rate of change of the channel is observed for different multipath environments. The proposed methods of decoding require modifications to ZF-SIC. The suggested changes are only applicable to a MIMO OFDM based method of data transmission. The most effective method of reducing decoding complexity and maintaining an acceptable number of bit errors was observed to occur in the time domain rather than in the frequency domain. For selecting frames and averaging frames in the time domain it was determined that the optimal number of OFDM symbols per frame is 1932 and 174, respectively.


Algorithms and VLSI Implementations of MIMO Detection

Algorithms and VLSI Implementations of MIMO Detection

Author: Ibrahim A. Bello

Publisher: Springer Nature

Published: 2022-07-22

Total Pages: 162

ISBN-13: 3031045122

DOWNLOAD EBOOK

This book provides a detailed overview of detection algorithms for multiple-input multiple-output (MIMO) communications systems focusing on their hardware realisation. The book begins by analysing the maximum likelihood detector, which provides the optimal bit error rate performance in an uncoded communications system. However, the maximum likelihood detector experiences a high complexity that scales exponentially with the number of antennas, which makes it impractical for real-time communications systems. The authors proceed to discuss lower-complexity detection algorithms such as zero-forcing, sphere decoding, and the K-best algorithm, with the aid of detailed algorithmic analysis and several MATLAB code examples. Furthermore, different design examples of MIMO detection algorithms and their hardware implementation results are presented and discussed. Finally, an ASIC design flow for implementing MIMO detection algorithms in hardware is provided, including the system simulation and modelling steps and register transfer level modelling using hardware description languages. Provides an overview of MIMO detection algorithms and discusses their corresponding hardware implementations in detail; Highlights architectural considerations of MIMO detectors in achieving low power consumption and high throughput; Discusses design tradeoffs that will guide readers’ efforts when implementing MIMO algorithms in hardware; Describes a broad range of implementations of different MIMO detectors, enabling readers to make informed design decisions based on their application requirements.


Receiver Architectures for MIMO Wireless Communication Systems Based on V-BLAST and Sphere Decoding Algorithms

Receiver Architectures for MIMO Wireless Communication Systems Based on V-BLAST and Sphere Decoding Algorithms

Author: Foluwaso Olunkunle Tade

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Modern day technology aspires to always progress. This progression leads to a lot of research in any significant area of improvement. There is a growing amount of end-users in the wireless spectrum which has led to a need for improved bandwidth usage and BER values. In other words, new technologies which would increase the capacity of wireless systems are proving to be a crucial point of research in these modern times. Different combinations of multiuser receivers are evaluated to determine performance under normal working conditions by comparing their BER performance charts. Multiple input, multiple output (MIMO) systems are incorporated into the system to utilise the increased capacity rates achievable using the MIMO configuration. The effect of MIMO on the technologies associated with modern day technological standards such as CDMA and OFDM have been investigated due to the significant capacity potentials these technologies normally exhibit in a single antenna scenario. An in-depth comparison is established before comparison is made with a conventional maximum likelihood (ML) detector. The complexity of the ML detector makes its realization evaluated in such a manner to achieve the same or near ML solution but with lower computational complexity. This was achieved using a proposed modification of the Schnorr-Euchner Sphere decoding algorithm (SE-SDA). The proposed sphere decoder (P-SD) adopts a modification of the radius utilised in the SE-SDA to obtain a near ML solution at a much lower complexity compared to the conventional ML decoder. The P-SD was configured to work in different MIMO antenna configurations. The need for the highest possible data rates from the available limited spectrum led to my research into the multi-user detection scenario and MIMO.


MIMO-OFDM for LTE, WiFi and WiMAX

MIMO-OFDM for LTE, WiFi and WiMAX

Author: Lajos Hanzo

Publisher: John Wiley & Sons

Published: 2010-11-01

Total Pages: 708

ISBN-13: 0470686693

DOWNLOAD EBOOK

MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications. This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book. Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book. Discusses many state-of-the-art topics important to today's wireless communications engineers. Includes numerous complete system design examples for the industrial practitioner. Offers a detailed portrayal of sphere detection. Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.


K-Best Decoders for 5G+ Wireless Communication

K-Best Decoders for 5G+ Wireless Communication

Author: Mehnaz Rahman

Publisher: Springer

Published: 2016-08-31

Total Pages: 75

ISBN-13: 3319428098

DOWNLOAD EBOOK

This book discusses new, efficient and hardware realizable algorithms that can attain the performance of beyond 5G wireless communication. The authors explain topics gradually, stepping from basic MIMO detection to optimized schemes for both hard and soft domain MIMO detection and also to the feasible VLSI implementation, scalable to any MIMO configuration (including massive MIMO, used in satellite/space communication). The techniques described in this book enable readers to implement real designs, with reduced computational complexity and improved performance.


Low Complexity MIMO Detection

Low Complexity MIMO Detection

Author: Lin Bai

Publisher: Springer Science & Business Media

Published: 2012-01-08

Total Pages: 251

ISBN-13: 1441985832

DOWNLOAD EBOOK

Low Complexity MIMO Detection introduces the principle of MIMO systems and signal detection via MIMO channels. This book systematically introduces the symbol detection in MIMO systems. Includes the fundamental knowledge of MIMO detection and recent research outcomes for low complexity MIMO detection.


Layered Space-time Structure for MIMO-OFDM Systems

Layered Space-time Structure for MIMO-OFDM Systems

Author: Jianxuan Du

Publisher:

Published: 2005

Total Pages: 94

ISBN-13:

DOWNLOAD EBOOK

The low complexity of layered processing makes the layered structure a promising candidate for MIMO systems with a large number of transmit antennas and higher order modulation. For broadband systems, orthogonal frequency division multiplexing (OFDM) appears promising for its immunity against delay spread. In addition, OFDM is especially suitable for frequency selective MIMO systems since the introduction of orthogonal subcarriers makes system design and implementation as simple as those for flat fading channels. Therefore, the combination of layered structure with OFDM is a promising technique for high-speed wireless data transmission. The proposed research is focused on the layered structure for MIMO-OFDM systems, where several techniques are proposed for performance enhancement, namely, channel estimation based on subspace tracking, parallel detection of group-wise space-time codes by predictive soft interference cancellation, quasi-block diagonal low-density parity-check codes (LDPC) coding and statistical data rate allocation for layered systems. For MIMO-OFDM systems, rank reduction by some linear transform matrix is necessary for channel estimation. In the proposed research, we propose a channel estimation algorithm for MIMO-OFDM systems, which uses the optimum low-rank channel approximation obtained by tracking the frequency autocorrelation matrix of the channel response. Then parallel detection algorithm is proposed for a modified layered system with group-wise space-time coding, where the structure of particular component space-time code trellises is exploited using partial information from the Viterbi decoder of the simultaneously decoded interfering component codes. Next we incorporate the layered structure with LDPC to develop a quasi-block diagonal LDPC space-time structure. The lower triangular structure of the parity check matrix introduces correlation between layers. Each layer, as a part of the whole codeword, can be decoded while taking information from other undetected layers to improve the decoding performance. In the end, a modified layered structure is proposed where the layer detection order is fixed and the data rate for each layer is allocated based on the detection order and channel statistics. With Gaussian approximation of layer capacities, we derive the optimum data rate allocation.