This book describes both the theory of atomic spectroscopy and all the major atomic spectrometric techniques (AAS, Flame-AES, Plasma AES, AFS, and ICP-MS), including basic concepts, instrumentation and applications. Spectrochemical Analysis by Atomic Absorption and Emission is very wide in scope and will be extremely useful to both undergraduates and lecturers undertaking modern analytical chemistry courses. It contains many figures and tables which illuminate the text, covers various sample preparation methods and gives suggestions for further reading.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is the most revolutionary innovation since the introduction of AAS in 1955. Here, the authors provide the first complete and comprehensive discussion of HR-CS AAS and its application to the analysis of a variety of difficult matrices. Published just in time with the first commercial instrument available for this new technique, the book is a must for all those who want to know more about HR-CS AAS, and in particular for all future users. The advantages of the new technique over conventional line-source AAS are clearly demonstrated using practical examples and numerous figures, many in full color. HR-CS AAS is overcoming essentially all the remaining limitations of established AAS, particularly the notorious problem of accurate background measurement and correction. Using a continuum radiation source and a CCD array detector makes the spectral environment visible to several tenths of a nanometer on both sides of the analytical line, tremendously facilitating method development and elimination of interferences. Conceived as a supplement to the standard reference work on AAS by B. Welz and M. Sperling, this book does not repeat such fundamentals as the principles of atomizers or atomization mechanisms. Instead, it is strictly focused on new and additional information required to profit from HR-CS AAS. It presents characteristic concentration for flame atomization and characteristic mass data for electrothermal atomization for all elements, as well as listing numerous secondary lines of lower sensitivity for the determination of higher analyte concentrations. The highly resolved molecular absorption spectra of nitric, sulfuric and phosphoric acids, observed in an air-acetylene flame, which are depicted together with the atomic lines of all elements, make it possible to predict potential spectral interferences.
This book addresses Furnace Atomic Absorption Spectroscopy (FAAS), which has gained worldwide acceptance as an analytical technique. FAAS offers 100-1000 times better determination and detection limits than other techniques for a majority of the elements. This technique requires a small sample size, and demands less sample-preparation time than others. The handbook is a collection of thousands of references for detection and determination of various elements in agricultural products, biological and clinical samples, and metallurgical and electronic materials. Each chapter is devoted to an element or a similar group of elements. Included are instrumental setup parameters, references, and author and subject indexes. Also presented are detailed appendixes covering glossary, list of manufacturers of spectrophotometers and its accessories, list of chemical suppliers, and list of reviews and abstracts. The handbook covers topics such as heavy metals, clinical products, and trace metal analysis. This desk-top reference is meant for chemists who handle day-to-day analysis problems in laboratories in government, clinical, industrial and academic settings. It is invaluable for those involved in research in environmental science, analytical chemistry, clinical chemistry and forensic science.
The thoroughly revised new edition of this best-seller, presents the wide use of AAS in numerous fields of application. The comparison between the different AAS techniques enables the reader to find the best solution for his analytical problem. Authors Bernhard Welz and Michael Sperling have succeeded in finding a balance between theoretical fundamentals and practical applications. The new chapter 'physical fundamentals' describes the basic principles of AAS. The development of AAS is now described in a separate chapter. Further new chapters are devoted to the latest developments in the field of flow injection and the use of computers for laboratory automation. Methodological progress e. g. speciation analysis is also covered in this new edition. The index and the extensive bibliography make this book a unique source of information. It will prove useful not only for analytical chemists, out also spectroscopists in industry, institutes, and universities. Atomic Absorption Spectrometry will also be invaluable for clinics and research institutes in the fields of biochemistry, medicine, food technology, geology, metallurgy, petrochemistry, and mineralogy.
This book addresses Furnace Atomic Absorption Spectroscopy (FAAS), which has gained worldwide acceptance as an analytical technique. FAAS offers 100-1000 times better determination and detection limits than other techniques for a majority of the elements. This technique requires a small sample size, and demands less sample-preparation time than others. The handbook is a collection of thousands of references for detection and determination of various elements in agricultural products, biological and clinical samples, and metallurgical and electronic materials. Each chapter is devoted to an element or a similar group of elements. Included are instrumental setup parameters, references, and author and subject indexes. Also presented are detailed appendixes covering glossary, list of manufacturers of spectrophotometers and its accessories, list of chemical suppliers, and list of reviews and abstracts. The handbook covers topics such as heavy metals, clinical products, and trace metal analysis. This desk-top reference is meant for chemists who handle day-to-day analysis problems in laboratories in government, clinical, industrial and academic settings. It is invaluable for those involved in research in environmental science, analytical chemistry, clinical chemistry and forensic science.
"One should rather go horne and mesh a net than jump into the pond and dive far fishes" (Chinese proverb) Recognizing the precise analytical question and planning the analysis according ly is certainly the first prerequisite for successful trace and ultratrace determina tions. The second prerequisite is to select the method appropriate to the analyti cal specification. The method itself consists of a set of available tools. The third prerequisite is that analysts and operators know the methods weH enough to enjoy challenging themselves as weH as the methods and are rewarded by the joy of high-quality data, fast and economical results and the conviction of having the analytical job under control. This skill is known among analysts or operators working with an exciting new and sometimes complicated analytical technique but is gradually lost on ce a technique becomes "mature" and a routine tool. Unfortunately, laboratory managers often do not allow sufficient training time for their analysts and technicians for "routine" techniques and thus miss an opportunity for motivating their co-workers and obtaining the full benefit of the equipment. Graphite furnace atomic absorption spectrometry (AAS) is one of the mature analytical techniques wh ich is seen as a routine method in most laboratories. More than 10,000 furnaces are operated in elemental trace and ultratrace analy ses in laboratories around the world today.