Recent Developments in Integrable Systems and Riemann-Hilbert Problems

Recent Developments in Integrable Systems and Riemann-Hilbert Problems

Author: Kenneth T-R McLaughlin

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 198

ISBN-13: 0821832034

DOWNLOAD EBOOK

This volume is a collection of papers presented at a special session on integrable systems and Riemann-Hilbert problems. The goal of the meeting was to foster new research by bringing together experts from different areas. Their contributions to the volume provide a useful portrait of the breadth and depth of integrable systems. Topics covered include discrete Painleve equations, integrable nonlinear partial differential equations, random matrix theory, Bose-Einstein condensation, spectral and inverse spectral theory, and last passage percolation models. In most of these articles, the Riemann-Hilbert problem approach plays a central role, which is powerful both analytically and algebraically. The book is intended for graduate students and researchers interested in integrable systems and its applications.


Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Author: Thomas Trogdon

Publisher: SIAM

Published: 2015-12-22

Total Pages: 370

ISBN-13: 1611974194

DOWNLOAD EBOOK

Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?


Recent Developments in Integrable Systems and Related Topics of Mathematical Physics

Recent Developments in Integrable Systems and Related Topics of Mathematical Physics

Author: Victor M. Buchstaber

Publisher: Springer

Published: 2018-12-30

Total Pages: 226

ISBN-13: 3030048071

DOWNLOAD EBOOK

This volume, whose contributors include leading researchers in their field, covers a wide range of topics surrounding Integrable Systems, from theoretical developments to applications. Comprising a unique collection of research articles and surveys, the book aims to serve as a bridge between the various areas of Mathematics related to Integrable Systems and Mathematical Physics. Recommended for postgraduate students and early career researchers who aim to acquire knowledge in this area in preparation for further research, this book is also suitable for established researchers aiming to get up to speed with recent developments in the area, and may very well be used as a guide for further study.


Log-Gases and Random Matrices (LMS-34)

Log-Gases and Random Matrices (LMS-34)

Author: Peter J. Forrester

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 808

ISBN-13: 1400835410

DOWNLOAD EBOOK

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.


Mathematics of Finance

Mathematics of Finance

Author: George Yin

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 414

ISBN-13: 0821834126

DOWNLOAD EBOOK

Contains papers based on talks given at the first AMS-IMS-SIAM Joint Summer Research Conference on Mathematics of Finance held at Snowbird. This book includes such topics as modeling, estimation, optimization, control, and risk assessment and management. It is suitable for students interested in mathematical finance.


Graph Colorings

Graph Colorings

Author: Marek Kubale

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 224

ISBN-13: 0821834584

DOWNLOAD EBOOK

Graph coloring is one of the oldest and best-known problems of graph theory. Statistics show that graph coloring is one of the central issues in the collection of several hundred classical combinatorial problems. This book covers the problems in graph coloring, which can be viewed as one area of discrete optimization.


Waves in Periodic and Random Media

Waves in Periodic and Random Media

Author: Peter Kuchment

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 232

ISBN-13: 0821832867

DOWNLOAD EBOOK

Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.


Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization

Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization

Author: Alexander Barvinok

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 210

ISBN-13: 0821834592

DOWNLOAD EBOOK

The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.


Discrete Geometric Analysis

Discrete Geometric Analysis

Author: Motoko Kotani

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 274

ISBN-13: 0821833510

DOWNLOAD EBOOK

Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.


Topological Algebras and Their Applications

Topological Algebras and Their Applications

Author: Hugo Arizmendi

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 152

ISBN-13: 0821835564

DOWNLOAD EBOOK

The Fourth International Conference on Topological Algebras and Their Applications was held in Oaxaca, Mexico. This meeting brought together international specialists and Mexican specialists in topological algebras, locally convex and Banach spaces, spectral theory, and operator theory and related topics. This volume contains talks presented at the conference as well as articles received in response to a call for papers; some are expository and provide new insights, while others contain new research. The book is suitable for graduate students and research mathematicians working in topological vector spaces, topological algebras, and their applications.