Recent Advances in Natural Language Processing II

Recent Advances in Natural Language Processing II

Author: Nicolas Nicolov

Publisher: John Benjamins Publishing

Published: 2000

Total Pages: 435

ISBN-13: 902723695X

DOWNLOAD EBOOK

This volume brings together revised versions of a selection of papers presented at the Second International Conference on “Recent Advances in Natural Language Processing” (RANLP'97) held in Tzigov Chark, Bulgaria, September 1997. The aim of the conference was to give researchers the opportunity to present new results in Natural Language Processing (NLP) based both on traditional and modern theories and approaches. The conference received substantial interest — 167 submissions from more than 20 countries. The best papers from the proceedings were selected for this volume, in the hope that they reflect the most significant and promising trends (and successful results) in NLP. The contributions have been grouped according to the following topics: tagging, lexical issues and parsing, word sense disambiguation and anaphora resolution, semantics, generation, machine translation, and categorisation and applications. The volume contains an extensive index.


Recent Advances in Natural Language Processing III

Recent Advances in Natural Language Processing III

Author: Nicolas Nicolov

Publisher: John Benjamins Publishing

Published: 2004-11-30

Total Pages: 418

ISBN-13: 9027294682

DOWNLOAD EBOOK

This volume brings together revised versions of a selection of papers presented at the 2003 International Conference on “Recent Advances in Natural Language Processing”. A wide range of topics is covered in the volume: semantics, dialogue, summarization, anaphora resolution, shallow parsing, morphology, part-of-speech tagging, named entity, question answering, word sense disambiguation, information extraction. Various ‘state-of-the-art’ techniques are explored: finite state processing, machine learning (support vector machines, maximum entropy, decision trees, memory-based learning, inductive logic programming, transformation-based learning, perceptions), latent semantic analysis, constraint programming. The papers address different languages (Arabic, English, German, Slavic languages) and use different linguistic frameworks (HPSG, LFG, constraint-based DCG). This book will be of interest to those who work in computational linguistics, corpus linguistics, human language technology, translation studies, cognitive science, psycholinguistics, artificial intelligence, and informatics.


Recent Advances in Natural Language Processing

Recent Advances in Natural Language Processing

Author: Nicolas Nicolov

Publisher: John Benjamins Publishing

Published: 2000-09-15

Total Pages: 436

ISBN-13: 9027283974

DOWNLOAD EBOOK

This volume brings together revised versions of a selection of papers presented at the Second International Conference on “Recent Advances in Natural Language Processing” (RANLP’97) held in Tzigov Chark, Bulgaria, September 1997. The aim of the conference was to give researchers the opportunity to present new results in Natural Language Processing (NLP) based both on traditional and modern theories and approaches. The conference received substantial interest — 167 submissions from more than 20 countries. The best papers from the proceedings were selected for this volume, in the hope that they reflect the most significant and promising trends (and successful results) in NLP. The contributions have been grouped according to the following topics: tagging, lexical issues and parsing, word sense disambiguation and anaphora resolution, semantics, generation, machine translation, and categorisation and applications. The volume contains an extensive index.


Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing

Author: Zhiyuan Liu

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 319

ISBN-13: 9811555737

DOWNLOAD EBOOK

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.


Transfer Learning for Natural Language Processing

Transfer Learning for Natural Language Processing

Author: Paul Azunre

Publisher: Simon and Schuster

Published: 2021-08-31

Total Pages: 262

ISBN-13: 163835099X

DOWNLOAD EBOOK

Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions


Recent Advances in Natural Language Processing

Recent Advances in Natural Language Processing

Author: Ruslan Mitkov

Publisher: John Benjamins Publishing

Published: 1997-01-01

Total Pages: 487

ISBN-13: 9027236402

DOWNLOAD EBOOK

This volume is based on contributions from the First International Conference on “Recent Advances in Natural Language Processing” (RANLP'95) held in Tzigov Chark, Bulgaria, 14-16 September 1995. This conference was one of the most important and competitively reviewed conferences in Natural Language Processing (NLP) for 1995 with submissions from more than 30 countries. Of the 48 papers presented at RANLP'95, the best (revised) papers have been selected for this book, in the hope that they reflect the most significant and promising trends (and latest successful results) in NLP. The book is organised thematically and the contributions are grouped according to the traditional topics found in NLP: morphology, syntax, grammars, parsing, semantics, discourse, grammars, generation, machine translation, corpus processing and multimedia. To help the reader find his/her way, the authors have prepared an extensive index which contains major terms used in NLP; an index of authors which lists the names of the authors and the page numbers of their paper(s); a list of figures; and a list of tables. This book will be of interest to researchers, lecturers and graduate students interested in Natural Language Processing and more specifically to those who work in Computational Linguistics, Corpus Linguistics and Machine Translation.


Advanced Natural Language Processing with TensorFlow 2

Advanced Natural Language Processing with TensorFlow 2

Author: Ashish Bansal

Publisher: Packt Publishing Ltd

Published: 2021-02-04

Total Pages: 381

ISBN-13: 1800201052

DOWNLOAD EBOOK

One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasks Key FeaturesApply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2Explore applications like text generation, summarization, weakly supervised labelling and moreRead cutting edge material with seminal papers provided in the GitHub repository with full working codeBook Description Recently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems. What you will learnGrasp important pre-steps in building NLP applications like POS taggingUse transfer and weakly supervised learning using libraries like SnorkelDo sentiment analysis using BERTApply encoder-decoder NN architectures and beam search for summarizing textsUse Transformer models with attention to bring images and text togetherBuild apps that generate captions and answer questions about images using custom TransformersUse advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP modelsWho this book is for This is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as data science, ML, research, analysis, etc.


Practical Natural Language Processing

Practical Natural Language Processing

Author: Sowmya Vajjala

Publisher: O'Reilly Media

Published: 2020-06-17

Total Pages: 455

ISBN-13: 149205402X

DOWNLOAD EBOOK

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective