This book provides topical information on innovative, structural and functional materials and composites with applications in various engineering fields covering the structure, properties, manufacturing process, and applications of these materials. It covers various topics in layered structures and layered materials. It discusses the latest developments in the materials engineering field. This book will be useful for academicians, researchers, and practitioners working in the fields of materials engineering, layered structures, and composite materials.
This book provides topical information on innovative, structural and functional materials and composites with applications in various engineering fields covering the structure, properties, manufacturing process, and applications of these materials. It covers various topics in layered structures and layered materials. It discusses the latest developments in the materials engineering field. This book will be useful for academicians, researchers, and practitioners working in the fields of materials engineering, layered structures, and composite materials.
This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
Nanocomposites based on layered double hydroxides (LDHs) have recently become a formidable research area due to their amendable properties and potential applications. The distinct properties of LDH polymer nanocomposites include a wide range of chemical compositions, structural homogeneity, unique anion exchanging ability, easy synthesis, high bound water content, memory effect, non-toxicity and biocompatibility. This means that LDH polymer nanocomposites have the potential for new and innovative applications. Layered Double Hydroxide Polymer Nanocomposites presents a comprehensive overview of the recent innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. As well as covering fundamental structural and chemical knowledge, this book also explores various properties and characterization techniques including microscopic, spectroscopic and mechanical behaviors. There is also a strong focus on the potential applications of LDH polymer nanocomposites, such as energy, electrical and electronic, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and their future applications. This book will be an essential read for all academics, researchers, engineers and students working in this area. - Fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques - Provides an analytical overview of the different types of characterization techniques and technologies - Extensive review on cutting-edge research for potential future applications, in a variety of industries
This book contains state-of-the-art review articles on specific research areas in the civil engineering discipline-the areas include geotechnical engineering, hydraulics and water resources engineering, and structural engineering. The articles are written by invited authors who are currently active at the international level in their respective research fields.
This state-of-the-art volume covers a wide range of subjects in experimental mechanics including optical methods of stress analysis (photoelasticity, moirè, etc.), composite materials, sandwich construction, fracture mechanics, fatigue and damage, nondestructive evaluation, dynamic problems, foam, materials, fiber optic sensors, speckle metrology, digital image processing, nanotechnology, neutron diffraction and synchrotron radiation methods. Written by leading scientists in the field, the book contains 71 papers presented at the Symposium on "Recent Advances in Experimental Mechanics", which was organized in honor of Professor I.M. Daniel at Virginia Tech, on June 23-28, 2002. The book presents a thorough review of the latest problems of experimental mechanics. It is a vital supplement and reference source for researchers, practicing engineers and students.
In Li-ion batteries, the transportation of ions between positive and negative electrodes relies on organic electrolytes with a low flammable point. Applications of this type of electrolyte lead to various safety problems. In addition, the commercially available organic electrolytes presently can be used only up to about 4.5V. It is therefore important to develop better electrode materials and explore new nonflammable electrolytes and new battery formats. The present book focuses on these problems.
Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Nanocomposites Mechanics of Composites Fracture & Fatigue of Composites Multifunctional Materials Damage Detection & Non-destructive Evaluation Composites for Wind Energy & Aerospace Applications Computed Tomography of Composites Manufacturing & Joining of Composites Novel Developments in Composites
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.