In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included.
Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other’s work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.
This book includes original research findings in the field of memetic algorithms for image processing applications. It gathers contributions on theory, case studies, and design methods pertaining to memetic algorithms for image processing applications ranging from defence, medical image processing, and surveillance, to computer vision, robotics, etc. The content presented here provides new directions for future research from both theoretical and practical viewpoints, and will spur further advances in the field.
Image and Video Processing is an active area of research due to its potential applications for solving real-world problems. Integrating computational intelligence to analyze and interpret information from image and video technologies is an essential step to processing and applying multimedia data. Emerging Technologies in Intelligent Applications for Image and Video Processing presents the most current research relating to multimedia technologies including video and image restoration and enhancement as well as algorithms used for image and video compression, indexing and retrieval processes, and security concerns. Featuring insight from researchers from around the world, this publication is designed for use by engineers, IT specialists, researchers, and graduate level students.
Although the technological boom has resulted in many advancements in modern society, it has also come with a few downfalls; most notably, the failure of new machines and equipment. This has prompted engineers to find suitable diagnostics tools to stop impending malfunctions and make working environments more efficient. Recent Advances in Applied Thermal Imaging for Industrial Applications is a critical reference source that outlines innovative analysis tools to combat systems failure in thermal imaging. Highlighting pertinent topics such as fuzzy c- means technique, human health diagnosis system, multidimensional processing, and optical analysis, this is an ideal resource for all engineers, practitioners, industry leaders, and researchers who are interested in staying up-to-date with advances in thermal imaging which prevents industrial system malfunctions.
This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with.
The volume is from the proceedings of the international conference held in celebration of Stanley Osher's sixtieth birthday. It presents recent developments and exciting new directions in scientific computing and partial differential equations for time dependent problems and its interplay with other fields, such as image processing, computer vision and graphics. Over the past decade, there have been very rapid developments in the field. This volume emphasizes the strong interaction of advanced mathematics with real-world applications and algorithms. The book is suitable for graduate students and research mathematicians interested in scientific computing and partial differential equations.
Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.
This book constitutes the proceedings of the 21st International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2023, held in Kumamoto, Japan, during August 2023. The 31 papers presented in this volume were carefully reviewed and selected from a total of 48 submissions. They were organized in topical sections named: Computer Vision, Affective Computing and Human Interactions, Managing the Biodiversity, Robotics and Drones, Machine Learning.