Probabilistic Reasoning in Expert Systems

Probabilistic Reasoning in Expert Systems

Author: Richard E. Neapolitan

Publisher: CreateSpace

Published: 2012-06-01

Total Pages: 448

ISBN-13: 9781477452547

DOWNLOAD EBOOK

This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.


Probabilistic Reasoning in Intelligent Systems

Probabilistic Reasoning in Intelligent Systems

Author: Judea Pearl

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 573

ISBN-13: 0080514898

DOWNLOAD EBOOK

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.


Expert Systems and Applied Artificial Intelligence

Expert Systems and Applied Artificial Intelligence

Author: Efraim Turban

Publisher: Macmillan College

Published: 1992

Total Pages: 840

ISBN-13:

DOWNLOAD EBOOK

"This book is devoted mainly to applied expert systems. It does cover four additional applied AI Topics: natural language processing, computer vision, speech understanding and intelligent robotics"--Preface


An Introduction to Expert Systems

An Introduction to Expert Systems

Author: Bryan S. Todd

Publisher:

Published: 1992

Total Pages: 95

ISBN-13: 9780902928732

DOWNLOAD EBOOK

Abstract: "This monograph provides an introduction to the theory of expert systems. The task of medical diagnosis is used as a unifying theme throughout. A broad perspective is taken, ranging from the role of diagnostic programs to methods of evaluation. While much emphasis is placed on probability theory, other calculi of uncertainty are given due consideration."


Fuzzy Expert Systems

Fuzzy Expert Systems

Author: Abraham Kandel

Publisher: CRC Press

Published: 1991-11-12

Total Pages: 344

ISBN-13: 9780849342974

DOWNLOAD EBOOK

Until recently, fuzzy logic was the intellectual plaything of a handful of researchers. Now it is being used to enhance the power of intelligent systems, as well as improve the performance and reduce the cost of intelligent and "smart" products appearing in the commercial market. Fuzzy Expert Systems focuses primarily on the theory of fuzzy expert systems and their applications in science and engineering. In doing so, it provides the first comprehensive study of "soft" expert systems and applications for those systems. Topics covered include general purpose fuzzy expert systems, processing imperfect information using structured frameworks, the fuzzy linguistic inference network generator, fuzzy associative memories, the role of approximate reasoning in medical expert systems, MILORD (a fuzzy expert systems shell), and COMAX (an autonomous fuzzy expert system for tactical communications networks. Fuzzy Expert Systems provides an invaluable reference resource for researchers and students in artificial intelligence (AI) and approximate reasoning (AR), as well as for other researchers looking for methods to apply similar tools in their own designs of intelligent systems.


Fuzzy Expert Systems and Fuzzy Reasoning

Fuzzy Expert Systems and Fuzzy Reasoning

Author: William Siler

Publisher: John Wiley & Sons

Published: 2005-02-22

Total Pages: 423

ISBN-13: 0471698490

DOWNLOAD EBOOK

Hier lernen Sie, Expertensysteme auf der Basis von Fuzzy Logic zu konstruieren, die sich für den praktischen Einsatz eignen. Expertensysteme werden zunächst allgemein definiert, und die zugrundeliegende Mathematik wird eingeführt. Regelbasierte Systeme werden gründlicher besprochen als in jedem anderen Buch mit ähnlichem Thema. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen. Von einem zugehörigen ftp-Server können Sie Ergänzungsmaterial abrufen. Für Praktiker und Forscher aus dem akademischen Umfeld gleichermaßen geeignet!


Genetic Fuzzy Systems: Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

Genetic Fuzzy Systems: Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

Author: Oscar Cordon

Publisher: World Scientific

Published: 2001-07-13

Total Pages: 489

ISBN-13: 9814494453

DOWNLOAD EBOOK

In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas.Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.


Managing Uncertainty in Expert Systems

Managing Uncertainty in Expert Systems

Author: Jerzy W. Grzymala-Busse

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 146153982X

DOWNLOAD EBOOK

3. Textbook for a course in expert systems,if an emphasis is placed on Chapters 1 to 3 and on a selection of material from Chapters 4 to 7. There is also the option of using an additional commercially available sheU for a programming project. In assigning a programming project, the instructor may use any part of a great variety of books covering many subjects, such as car repair. Instructions for mostofthe "weekend mechanic" books are close stylisticaUy to expert system rules. Contents Chapter 1 gives an introduction to the subject matter; it briefly presents basic concepts, history, and some perspectives ofexpert systems. Then itpresents the architecture of an expert system and explains the stages of building an expert system. The concept of uncertainty in expert systems and the necessity of deal ing with the phenomenon are then presented. The chapter ends with the descrip tion of taxonomy ofexpert systems. Chapter 2 focuses on knowledge representation. Four basic ways to repre sent knowledge in expert systems are presented: first-order logic, production sys tems, semantic nets, and frames. Chapter 3 contains material about knowledge acquisition. Among machine learning techniques, a methodofrule learning from examples is explained in de tail. Then problems ofrule-base verification are discussed. In particular, both consistency and completeness oftherule base are presented.


Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems

Author: Rudolf Kruse

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 495

ISBN-13: 3642767028

DOWNLOAD EBOOK

The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.