Concentrating on the "nuts and bolts" of writing ray tracing programs, this new and revised edition emphasizes practical and implementation issues and takes the reader through all the details needed to write a modern rendering system. Most importantly, the book adds many C++ code segments, and adds new details to provide the reader with a better intuitive understanding of ray tracing algorithms.
Photon mapping, an extension of ray tracing, makes it possible to efficiently simulate global illumination in complex scenes. Photon mapping can simulate caustics (focused light, like shimmering waves at the bottom of a swimming pool), diffuse inter-reflections (e.g., the "bleeding" of colored light from a red wall onto a white floor, giving the floor a reddish tint), and participating media (such as clouds or smoke). This book is a practical guide to photon mapping; it provides the theory and practical insight necessary to implement photon mapping and simulate all types of direct and indirect illumination efficiently.
This book provides a fundamental understanding of global illumination algorithms. It discusses a broad class of algorithms for realistic image synthesis and introduces a theoretical basis for the algorithms presented. Topics include: physics of light transport, Monte Carlo methods, general strategies for solving the rendering equation, stochastic path-tracing algorithms such as ray tracing and light tracing, stochastic radiosity including photon density estimation and hierarchical Monte Carlo radiosity, hybrid algorithms, metropolis light transport, irradiance caching, photon mapping and instant radiosity, beyond the rendering equation, image display and human perception. If you want to design and implement a global illumination rendering system or need to use and modify an existing system for your specific purpose, this book will give you the tools and the understanding to do so.
At the time of rapid technological progress and uptake of High Dynamic Range (HDR) video content in numerous sectors, this book provides an overview of the key supporting technologies, discusses the effectiveness of various techniques, reviews the initial standardization efforts and explores new research directions in all aspects involved in HDR video systems. Topics addressed include content acquisition and production, tone mapping and inverse tone mapping operators, coding, quality of experience, and display technologies. This book also explores a number of applications using HDR video technologies in the automotive industry, medical imaging, spacecraft imaging, driving simulation and watermarking. By covering general to advanced topics, along with a broad and deep analysis, this book is suitable for both the researcher new or familiar to the area. With this book the reader will: - Gain a broad understanding of all the elements in the HDR video processing chain - Learn the most recent results of ongoing research - Understand the challenges and perspectives for HDR video technologies - Covers a broad range of topics encompassing the whole processing chain in HDR video systems, from acquisition to display - Provides a comprehensive overview of this fast emerging topic - Presents upcoming applications taking advantages of HDR
Photorealistic rendering strives to generate images from computer modeled scenes with an image quality as close to real life as possible. A major issue in rendering is simulation of local and global light reflection in a scene. Both ray tracing and radiosity algorithms capture only some of the possible light reflection phenomena. Recently developed two-pass algorithms combine the ray tracing and radiosity approaches and are able to capture the whole range of light reflection. This book is a collection of papers discussing the latest developments, including a new range of improvements, in stochastic sampling strategies, radiosity form factor calculation, and parallel processing for ray tracing and radiosity. A number of papers on rendering applications in interior design, lighting design, and remote sensing conclude the volume. The contributions are revised versions of papers originally presented at the Second Eurographics Workshop on Rendering, held in Barcelona, Spain, in May 1991. The book fully reflects the state of the art in rendering and presentsa wide variety of novel techniques. It will interest researchers and students in computer graphics, as well as designers who want to apply rendering techniques for realistic simulation in lighting design, interior design, and architecture.
This updated edition describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. Through the ideas and software in this book, designers will learn to design and employ a full-featured rendering system for creating stunning imagery. Includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux.
This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for:Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPUs
The goal of image synthesis is to create, using the computer, a visual experience that is identical to what a viewer would experience when viewing a real environment. Radiosity and Realistic Image Synthesis offers the first comprehensive look at the radiosity method for image synthesis and the tools required to approach this elusive goal. Basic concepts and mathematical fundamentals underlying image synthesis and radiosity algorithms are covered thoroughly. (A basic knowledge of undergraduate calculus is assumed). The algorithms that have been developed to implement the radiosity method ranging from environment subdivision to final display are discussed. Successes and difficulties in implementing and using these algorithms are highlighted. Extensions to the basic radiosity method to include glossy surfaces, fog or smoke, and realistic light sources are also described. There are 16 pages of full colour images and over 100 illustrations to explain the development and show the results of the radiosity method. Results of applications of this new technology from a variety of fields are also included. Michael Cohen has worked in the area of realistic image synthesis since 1983 and was instrumental in the development of the radiosity method. He is currently an assistant professor of computer science at Princeton University. John Wallace is a software engineer at 3D/EYE, Inc., where he is the project leader for the development of Hewlett-Packard's ATRCore radiosity and ray tracing library. A chapter on the basic concepts of image synthesis is contributed by Patrick Hanrahan. He has worked on the topic of image synthesis at Pixar, where he was instrumental in the development of the Renderman software. He has also led research on the hierarchical methods at Princeton University, where he is an associate professor of computer science. All three authors have written numerous articles on radiosity that have appeared in the SIGGAPH proceedings and elsewhere. They have also taught the SIGGRAPH course on radiosity for 5 years. - The first comprehensive book written about radiosity - Features applications from the fields of computer graphics, architecture, industrial design, and related computer aided design technologies - Offers over 100 illustrations and 16 pages of full-color images demonstrating the results of radiosity methods - Contains a chapter authored by Pat Hanrahan on the basic concepts of image synthesis and a foreword by Donald Greenberg
The creation of ever more realistic 3-D images is central to the development of computer graphics. The ray tracing technique has become one of the most popular and powerful means by which photo-realistic images can now be created. The simplicity, elegance and ease of implementation makes ray tracing an essential part of understanding and exploiting state-of-the-art computer graphics.An Introduction to Ray Tracing develops from fundamental principles to advanced applications, providing "how-to" procedures as well as a detailed understanding of the scientific foundations of ray tracing. It is also richly illustrated with four-color and black-and-white plates. This is a book which will be welcomed by all concerned with modern computer graphics, image processing, and computer-aided design. - Provides practical "how-to" information - Contains high quality color plates of images created using ray tracing techniques - Progresses from a basic understanding to the advanced science and application of ray tracing