Real Linear Algebra
Author: Antal E. Fekete
Publisher: CRC Press
Published: 1985-01-25
Total Pages: 464
ISBN-13: 9780824772383
DOWNLOAD EBOOKRead and Download eBook Full
Author: Antal E. Fekete
Publisher: CRC Press
Published: 1985-01-25
Total Pages: 464
ISBN-13: 9780824772383
DOWNLOAD EBOOKAuthor: Stephen Boyd
Publisher: Cambridge University Press
Published: 2018-06-07
Total Pages: 477
ISBN-13: 1316518965
DOWNLOAD EBOOKA groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Author: Sheldon Axler
Publisher: Springer Science & Business Media
Published: 1997-07-18
Total Pages: 276
ISBN-13: 9780387982595
DOWNLOAD EBOOKThis text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Author: Alexander Givental
Publisher: American Mathematical Soc.
Published: 2001
Total Pages: 150
ISBN-13: 9780821828502
DOWNLOAD EBOOKThe material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.
Author: Ivan Savov
Publisher:
Published: 2020-10-25
Total Pages: 596
ISBN-13: 9780992001025
DOWNLOAD EBOOKThis textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
Author: Bruno Nachtergaele
Publisher: World Scientific Publishing Company
Published: 2015-11-30
Total Pages: 209
ISBN-13: 9814723797
DOWNLOAD EBOOKThis is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Author: Robert R. Stoll
Publisher: Courier Corporation
Published: 2012-10-17
Total Pages: 290
ISBN-13: 0486623181
DOWNLOAD EBOOKAdvanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
Published: 2012-08-23
Total Pages: 536
ISBN-13: 3642309941
DOWNLOAD EBOOKThis book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Author: Shmuel Friedland
Publisher: SIAM
Published: 2018-01-30
Total Pages: 301
ISBN-13: 161197514X
DOWNLOAD EBOOKThis introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
Author: Mary Jane Sterling
Publisher: John Wiley & Sons
Published: 2009-06-05
Total Pages: 387
ISBN-13: 0470538163
DOWNLOAD EBOOKLearn to: Solve linear algebra equations in several ways Put data in order with matrices Determine values with determinants Work with eigenvalues and eigenvectors Your hands-on guide to real-world applications of linear algebra Does linear algebra leave you feeling lost? No worries this easy-to-follow guide explains the how and the why of solving linear algebra problems in plain English. From matrices to vector spaces to linear transformations, you'll understand the key concepts and see how they relate to everything from genetics to nutrition to spotted owl extinction. Line up the basics discover several different approaches to organizing numbers and equations, and solve systems of equations algebraically or with matrices Relate vectors and linear transformations link vectors and matrices with linear combinations and seek solutions of homogeneous systems Evaluate determinants see how to perform the determinant function on different sizes of matrices and take advantage of Cramer's rule Hone your skills with vector spaces determine the properties of vector spaces and their subspaces and see linear transformation in action Tackle eigenvalues and eigenvectors define and solve for eigenvalues and eigenvectors and understand how they interact with specific matrices Open the book and find: Theoretical and practical ways of solving linear algebra problems Definitions of terms throughout and in the glossary New ways of looking at operations How linear algebra ties together vectors, matrices, determinants, and linear transformations Ten common mathematical representations of Greek letters Real-world applications of matrices and determinants