Volume 34 of Reviews in Mineralogy focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Since the field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research, including geochemistry, geology, physics, chemistry, hydrology, and engineering, this book is an attempt to some extent bridge the gap between these different disciplines. This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado.
Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive Transport in Porous Media, RT principles have expanded beyond early applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.
The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.
Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.
This book covers the basics of abiotic colloid characterization, of biocolloids and biofilms, the resulting transport phenomena and their engineering aspects. The contributors comprise an international group of leading specialists devoted to colloidal sciences. The contributions include theoretical considerations, results from model experiments, and field studies. The information provided here will benefit students and scientists interested in the analytical, chemical, microbiological, geological and hydrological aspects of material transport in aquatic systems and soils.
Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This book addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to achieve economically feasible results.
This RiMG (Reviews in Mineralogy & Geochemistry) volume includes contributions that review experimental, characterization, and modeling advances in our understanding of pore-scale geochemical processes. The volume had its origins in a special theme session at the 2015 Goldschmidt Conference in Prague. From a diversity of pore-scale topics that ranged from multi-scale characterization to modeling, this work summarizes the state-of-the-science in this subject. Topics include: modification of thermodynamics and kinetics in small pores. chemo-mechanical processes and how they affect porosity evolution in geological media. small angle neutron scattering (SANS) techniques. how isotopic gradients across fluid–mineral boundaries can develop and how these provide insight into pore-scale processes. Information on an important class of models referred to as "pore network" and much more. The material in this book is accessible for graduate students, researchers, and professionals in the earth, material, environmental, hydrological, and biological sciences. The pore scale is readily recognizable to geochemists, and yet in the past it has not received a great deal of attention as a distinct scale or environment that is associated with its own set of questions and challenges. Is the pore scale merely an environment in which smaller scale (molecular) processes aggregate, or are there emergent phenomena unique to this scale? Is it simply a finer-grained version of the "continuum" scale that is addressed in larger-scale models and interpretations? The scale is important because it accounts for the pore architecture within which such diverse processes as multi-mineral reaction networks, microbial community interaction, and transport play out, giving rise to new geochemical behavior that might not be understood or predicted by considering smaller or larger scales alone.
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete