Rationality Problems in Algebraic Geometry

Rationality Problems in Algebraic Geometry

Author: Arnaud Beauville

Publisher: Springer

Published: 2016-12-06

Total Pages: 176

ISBN-13: 3319462091

DOWNLOAD EBOOK

Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.


Rational Points on Varieties

Rational Points on Varieties

Author: Bjorn Poonen

Publisher: American Mathematical Soc.

Published: 2017-12-13

Total Pages: 358

ISBN-13: 1470437732

DOWNLOAD EBOOK

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.


Algebraic Geometry for Scientists and Engineers

Algebraic Geometry for Scientists and Engineers

Author: Shreeram Shankar Abhyankar

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 311

ISBN-13: 0821815350

DOWNLOAD EBOOK

Based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, this book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities.


Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry

Author: Izzet Coskun

Publisher: American Mathematical Soc.

Published: 2017-07-12

Total Pages: 386

ISBN-13: 1470435578

DOWNLOAD EBOOK

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.


Cohomological and Geometric Approaches to Rationality Problems

Cohomological and Geometric Approaches to Rationality Problems

Author: Fedor Bogomolov

Publisher: Springer Science & Business Media

Published: 2009-11-03

Total Pages: 316

ISBN-13: 0817649344

DOWNLOAD EBOOK

Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry. This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties. This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems. Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov


Birational Geometry, Rational Curves, and Arithmetic

Birational Geometry, Rational Curves, and Arithmetic

Author: Fedor Bogomolov

Publisher: Springer Science & Business Media

Published: 2013-05-17

Total Pages: 324

ISBN-13: 146146482X

DOWNLOAD EBOOK

​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.


Classical Algebraic Geometry

Classical Algebraic Geometry

Author: Igor V. Dolgachev

Publisher: Cambridge University Press

Published: 2012-08-16

Total Pages: 653

ISBN-13: 1139560786

DOWNLOAD EBOOK

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.


Rational Curves on Algebraic Varieties

Rational Curves on Algebraic Varieties

Author: Janos Kollar

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 330

ISBN-13: 3662032767

DOWNLOAD EBOOK

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.


Rational and Nearly Rational Varieties

Rational and Nearly Rational Varieties

Author: János Kollár

Publisher: Cambridge University Press

Published: 2004-04-22

Total Pages: 246

ISBN-13: 9780521832076

DOWNLOAD EBOOK

The most basic algebraic varieties are the projective spaces, and rational varieties are their closest relatives. In many applications where algebraic varieties appear in mathematics and the sciences, we see rational ones emerging as the most interesting examples. The authors have given an elementary treatment of rationality questions using a mix of classical and modern methods. Arising from a summer school course taught by János Kollár, this book develops the modern theory of rational and nearly rational varieties at a level that will particularly suit graduate students. There are numerous examples and exercises, all of which are accompanied by fully worked out solutions, that will make this book ideal as the basis of a graduate course. It will act as a valuable reference for researchers whilst helping graduate students to reach the point where they can begin to tackle contemporary research problems.


Lectures on Logarithmic Algebraic Geometry

Lectures on Logarithmic Algebraic Geometry

Author: Arthur Ogus

Publisher: Cambridge University Press

Published: 2018-11-08

Total Pages: 559

ISBN-13: 1107187737

DOWNLOAD EBOOK

A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.