Extrapolation and Rational Approximation

Extrapolation and Rational Approximation

Author: Claude Brezinski

Publisher: Springer Nature

Published: 2020-11-30

Total Pages: 410

ISBN-13: 3030584186

DOWNLOAD EBOOK

This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.


Rational Approximation of Real Functions

Rational Approximation of Real Functions

Author: P. P. Petrushev

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 388

ISBN-13: 9780521177405

DOWNLOAD EBOOK

This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.


Methods of Numerical Approximation

Methods of Numerical Approximation

Author: D. C. Handscomb

Publisher: Elsevier

Published: 2014-05-16

Total Pages: 229

ISBN-13: 1483149021

DOWNLOAD EBOOK

Methods of Numerical Approximation is based on lectures delivered at the Summer School held in September 1965, at Oxford University. The book deals with the approximation of functions with one or more variables, through means of more elementary functions. It explains systems to approximate functions, such as trigonometric sums, rational functions, continued fractions, and spline functions. The book also discusses linear approximation including topics such as convergence of polynomial interpolation and the least-squares approximation. The text analyzes Bernstein polynomials, Weierstrass' theorem, and Lagrangian interpolation. The book also gives attention to the Chebyshev least-squares approximation, the Chebyshev series, and the determination of Chebyshev series, under general methods. These general methods are useful when the student wants to investigate practical methods for finding forms of approximations under various situations. One of the lectures concerns the general theory of linear approximation and the existence of a best approximation approach using different theorems. The book also discusses the theory and calculation of the best rational approximations as well as the optimal approximation of linear functionals. The text will prove helpful for students in advanced mathematics and calculus. It can be appreciated by statisticians and those working with numbers theory.


Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Author: Andrei A. Gonchar

Publisher: Springer

Published: 2008-01-03

Total Pages: 225

ISBN-13: 3540477926

DOWNLOAD EBOOK

The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Signals and Systems Using MATLAB®

Signals and Systems Using MATLAB®

Author: Aydin Akan

Publisher: Elsevier

Published: 2024-03-22

Total Pages: 850

ISBN-13: 0443157103

DOWNLOAD EBOOK

Signals and Systems Using MATLAB, Fourth Edition features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications, and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more worked examples and a variety of new end-of-chapter problems, suggestions for labs, and more explanation of MATLAB code. - Introduces both continuous and discrete systems early and then studies each separately more in-depth - Contains an extensive set of worked examples and homework assignments with applications to controls, communications, and signal processing - Begins with a review of all the background math necessary to study the subject - Includes MATLAB® problems and applications in every chapter


Wavelets

Wavelets

Author: Stephane Jaffard

Publisher: SIAM

Published: 2001-01-01

Total Pages: 257

ISBN-13: 0898718112

DOWNLOAD EBOOK

This long-awaited update of Meyer's Wavelets : algorithms and applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to Hölder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.


Fractional Order Processes

Fractional Order Processes

Author: Seshu Kumar Damarla

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 340

ISBN-13: 0429996896

DOWNLOAD EBOOK

The book presents efficient numerical methods for simulation and analysis of physical processes exhibiting fractional order (FO) dynamics. The book introduces FO system identification method to estimate parameters of a mathematical model under consideration from experimental or simulated data. A simple tuning technique, which aims to produce a robust FO PID controller exhibiting iso-damping property during re-parameterization of a plant, is devised in the book. A new numerical method to find an equivalent finite dimensional integer order system for an infinite dimensional FO system is developed in the book. The book also introduces a numerical method to solve FO optimal control problems. Key features Proposes generalized triangular function operational matrices. Shows significant applications of triangular orthogonal functions as well as triangular strip operational matrices in simulation, identification and control of fractional order processes. Provides numerical methods for simulation of physical problems involving different types of weakly singular integral equations, Abel’s integral equation, fractional order integro-differential equations, fractional order differential and differential-algebraic equations, and fractional order partial differential equations. Suggests alternative way to do numerical computation of fractional order signals and systems and control. Provides source codes developed in MATLAB for each chapter, allowing the interested reader to take advantage of these codes for broadening and enhancing the scope of the book itself and developing new results.


Number Theory Through Inquiry

Number Theory Through Inquiry

Author: David C. Marshall

Publisher: American Mathematical Soc.

Published: 2020-08-21

Total Pages: 140

ISBN-13: 1470461595

DOWNLOAD EBOOK

Number Theory Through Inquiry is an innovative textbook that leads students on a carefully guided discovery of introductory number theory. The book has two equally significant goals. One goal is to help students develop mathematical thinking skills, particularly, theorem-proving skills. The other goal is to help students understand some of the wonderfully rich ideas in the mathematical study of numbers. This book is appropriate for a proof transitions course, for an independent study experience, or for a course designed as an introduction to abstract mathematics. Math or related majors, future teachers, and students or adults interested in exploring mathematical ideas on their own will enjoy Number Theory Through Inquiry. Number theory is the perfect topic for an introduction-to-proofs course. Every college student is familiar with basic properties of numbers, and yet the exploration of those familiar numbers leads us to a rich landscape of ideas. Number Theory Through Inquiry contains a carefully arranged sequence of challenges that lead students to discover ideas about numbers and to discover methods of proof on their own. It is designed to be used with an instructional technique variously called guided discovery or Modified Moore Method or Inquiry Based Learning (IBL). Instructors' materials explain the instructional method. This style of instruction gives students a totally different experience compared to a standard lecture course. Here is the effect of this experience: Students learn to think independently: they learn to depend on their own reasoning to determine right from wrong; and they develop the central, important ideas of introductory number theory on their own. From that experience, they learn that they can personally create important ideas, and they develop an attitude of personal reliance and a sense that they can think effectively about difficult problems. These goals are fundamental to the educational enterprise within and beyond mathematics.