Randomized Algorithms

Randomized Algorithms

Author: Rajeev Motwani

Publisher: Cambridge University Press

Published: 1995-08-25

Total Pages: 496

ISBN-13: 1139643134

DOWNLOAD EBOOK

For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students.


Probability and Computing

Probability and Computing

Author: Michael Mitzenmacher

Publisher: Cambridge University Press

Published: 2005-01-31

Total Pages: 372

ISBN-13: 9780521835404

DOWNLOAD EBOOK

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.


Concentration of Measure for the Analysis of Randomized Algorithms

Concentration of Measure for the Analysis of Randomized Algorithms

Author: Devdatt P. Dubhashi

Publisher: Cambridge University Press

Published: 2009-06-15

Total Pages: 213

ISBN-13: 1139480995

DOWNLOAD EBOOK

Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.


Randomized Algorithms in Automatic Control and Data Mining

Randomized Algorithms in Automatic Control and Data Mining

Author: Oleg Granichin

Publisher: Springer

Published: 2014-07-14

Total Pages: 268

ISBN-13: 3642547869

DOWNLOAD EBOOK

In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.


Randomized Algorithms for Analysis and Control of Uncertain Systems

Randomized Algorithms for Analysis and Control of Uncertain Systems

Author: Roberto Tempo

Publisher: Springer Science & Business Media

Published: 2012-10-21

Total Pages: 363

ISBN-13: 1447146107

DOWNLOAD EBOOK

The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: · self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; · development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; · comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; · applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar


Randomized Algorithms: Approximation, Generation, and Counting

Randomized Algorithms: Approximation, Generation, and Counting

Author: Russ Bubley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 167

ISBN-13: 1447106954

DOWNLOAD EBOOK

Randomized Algorithms discusses two problems of fine pedigree: counting and generation, both of which are of fundamental importance to discrete mathematics and probability. When asking questions like "How many are there?" and "What does it look like on average?" of families of combinatorial structures, answers are often difficult to find -- we can be blocked by seemingly intractable algorithms. Randomized Algorithms shows how to get around the problem of intractability with the Markov chain Monte Carlo method, as well as highlighting the method's natural limits. It uses the technique of coupling before introducing "path coupling" a new technique which radically simplifies and improves upon previous methods in the area.


Randomized Algorithms

Randomized Algorithms

Author: Rajeev Motwani

Publisher: Cambridge University Press

Published: 1995-08-25

Total Pages: 496

ISBN-13: 9780521474658

DOWNLOAD EBOOK

This book presents basic tools from probability theory used in algorithmic applications, with concrete examples.


Algorithms for Random Generation and Counting: A Markov Chain Approach

Algorithms for Random Generation and Counting: A Markov Chain Approach

Author: A. Sinclair

Publisher: Springer Science & Business Media

Published: 1993-02

Total Pages: 161

ISBN-13: 0817636587

DOWNLOAD EBOOK

This monograph is a slightly revised version of my PhD thesis [86], com pleted in the Department of Computer Science at the University of Edin burgh in June 1988, with an additional chapter summarising more recent developments. Some of the material has appeared in the form of papers [50,88]. The underlying theme of the monograph is the study of two classical problems: counting the elements of a finite set of combinatorial structures, and generating them uniformly at random. In their exact form, these prob lems appear to be intractable for many important structures, so interest has focused on finding efficient randomised algorithms that solve them ap proxim~ly, with a small probability of error. For most natural structures the two problems are intimately connected at this level of approximation, so it is natural to study them together. At the heart of the monograph is a single algorithmic paradigm: sim ulate a Markov chain whose states are combinatorial structures and which converges to a known probability distribution over them. This technique has applications not only in combinatorial counting and generation, but also in several other areas such as statistical physics and combinatorial optimi sation. The efficiency of the technique in any application depends crucially on the rate of convergence of the Markov chain.


Computational Geometry

Computational Geometry

Author: Ketan Mulmuley

Publisher: Prentice Hall

Published: 1994

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

For beginning graduate-level courses in computational geometry. This up-to-date and concise introduction to computational geometry with emphasis on simple randomized methods is designed for quick, easy access to beginners.