Random Probability Measures on Polish Spaces

Random Probability Measures on Polish Spaces

Author: Hans Crauel

Publisher: CRC Press

Published: 2002-07-25

Total Pages: 138

ISBN-13: 9780203219119

DOWNLOAD EBOOK

In this monograph the narrow topology on random probability measures on Polish spaces is investigated in a thorough and comprehensive way. As a special feature, no additional assumptions on the probability space in the background, such as completeness or a countable generated algebra, are made. One of the main results is a direct proof of the rando


A Modern Approach to Probability Theory

A Modern Approach to Probability Theory

Author: Bert E. Fristedt

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 775

ISBN-13: 1489928375

DOWNLOAD EBOOK

Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.


An Invitation to Statistics in Wasserstein Space

An Invitation to Statistics in Wasserstein Space

Author: Victor M. Panaretos

Publisher: Springer Nature

Published: 2020-03-10

Total Pages: 157

ISBN-13: 3030384381

DOWNLOAD EBOOK

This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.


Probability Space

Probability Space

Author: Nancy Kress

Publisher: Macmillan

Published: 2004-01-05

Total Pages: 372

ISBN-13: 9780765345141

DOWNLOAD EBOOK

Nancy Kress cemented her reputation in SF with the publication of her multiple-award–winning novella, “Beggars in Spain,” which became the basis for her extremely successful Beggars Trilogy (comprising Beggars in Spain, Beggars and Choosers, and Beggars Ride). And now she brings us Probability Space, the conclusion of the trilogy that began with Probability Moon and then Probability Sun, which is centered on the same world as Kress’s Nebula Award-winning novelette, “Flowers of Aulit Prison.” The Probability Trilogy has already been widely recognized as the next great work by this important SF writer. In Probability Space, humanity’s war with the alien Fallers continues, and it is a war we are losing. Our implacable foes ignore all attempts at communication, and they take no prisoners. Our only hope lies with an unlikely coalition: Major Lyle Kaufman, retired warrior; Marbet Grant, the Sensitive who’s involved with Kaufman; Amanda, a very confused fourteen-year-old girl; and Magdalena, one of the biggest power brokers in all of human space. As the action moves from Earth to Mars to the farthest reaches of known space, with civil unrest back home and alien war in deep space, four humans--armed with little more than an unproven theory--try to enter the Fallers’ home star system. It’s a desperate gamble, and the fate of the entire universe may hang in the balance.


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


Mathematics of Two-Dimensional Turbulence

Mathematics of Two-Dimensional Turbulence

Author: Sergei Kuksin

Publisher: Cambridge University Press

Published: 2012-09-20

Total Pages: 337

ISBN-13: 113957695X

DOWNLOAD EBOOK

This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier–Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) – proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces.


Probability Measures on Metric Spaces

Probability Measures on Metric Spaces

Author: K. R. Parthasarathy

Publisher: Academic Press

Published: 2014-07-03

Total Pages: 289

ISBN-13: 1483225259

DOWNLOAD EBOOK

Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.


The Poisson-Dirichlet Distribution and Related Topics

The Poisson-Dirichlet Distribution and Related Topics

Author: Shui Feng

Publisher: Springer Science & Business Media

Published: 2010-05-27

Total Pages: 228

ISBN-13: 3642111947

DOWNLOAD EBOOK

Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.


Stable Convergence and Stable Limit Theorems

Stable Convergence and Stable Limit Theorems

Author: Erich Häusler

Publisher: Springer

Published: 2015-06-09

Total Pages: 231

ISBN-13: 331918329X

DOWNLOAD EBOOK

The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.


Advances in Disordered Systems, Random Processes and Some Applications

Advances in Disordered Systems, Random Processes and Some Applications

Author: Pierluigi Contucci

Publisher: Cambridge University Press

Published: 2017

Total Pages: 383

ISBN-13: 1107124107

DOWNLOAD EBOOK

This book offers a unified perspective on the study of complex systems with contributions written by leading scientists from various disciplines, including mathematics, physics, computer science, biology, economics and social science. It is written for researchers from a broad range of scientific fields with an interest in recent developments in complex systems.