Random Light Beams

Random Light Beams

Author: Olga Korotkova

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 399

ISBN-13: 1351833871

DOWNLOAD EBOOK

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.


Random Light Beams

Random Light Beams

Author: Olga Korotkova

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 366

ISBN-13: 1439819513

DOWNLOAD EBOOK

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.


A Guided Tour of Light Beams

A Guided Tour of Light Beams

Author: David S Simon

Publisher: Morgan & Claypool Publishers

Published: 2016-12-07

Total Pages: 105

ISBN-13: 1681744376

DOWNLOAD EBOOK

From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.


Analysis of Quantised Vortex Tangle

Analysis of Quantised Vortex Tangle

Author: Alexander John Taylor

Publisher: Springer

Published: 2016-11-24

Total Pages: 206

ISBN-13: 3319485563

DOWNLOAD EBOOK

In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The work is highly visual, and illustrated with many beautiful diagrams revealing this unanticipated aspect of the physics of waves. Linear superpositions of waves create interference patterns, which means in some places they strengthen one another, while in others they completely cancel each other out. This latter phenomenon occurs on 'vortex lines' in three dimensions. In general wave superpositions modelling e.g. chaotic cavity modes, these vortex lines form dense tangles that have never been visualised on the large scale before, and cannot be analysed mathematically by any known techniques.


Polarized Light and the Mueller Matrix Approach

Polarized Light and the Mueller Matrix Approach

Author: José Jorge Gil

Publisher: CRC Press

Published: 2022-06-19

Total Pages: 517

ISBN-13: 1000568660

DOWNLOAD EBOOK

An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena Now thoroughly revised, Polarized Light and the Mueller Matrix Approach cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology. The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and Mueller-Jones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices. The authors proceed with introducing the arbitrary decomposition and other useful parallel decompositions, and compare the powerful serial decompositions of depolarizing Mueller matrices. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. Useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media are also comprehensively described. The book concludes with a new chapter devoted to the main procedures for filtering measured Mueller matrices. Suitable for advanced graduates and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.


Electromagnetic Scintillation: Volume 2, Weak Scattering

Electromagnetic Scintillation: Volume 2, Weak Scattering

Author: Albert D. Wheelon

Publisher: Cambridge University Press

Published: 2003-07-31

Total Pages: 462

ISBN-13: 113943960X

DOWNLOAD EBOOK

The first volume of this set of books on electromagnetic scintillation dealt with phase and angle-of-arrival measurement errors, which are accurately described by geometrical optics. This second volume concentrates on amplitude and intensity fluctuations of the received signal.


The Secrets of the Mysterious Mansion

The Secrets of the Mysterious Mansion

Author: Barry Forbes

Publisher: Barry Forbes

Published: 2019-11-17

Total Pages: 125

ISBN-13:

DOWNLOAD EBOOK

Heidi Hoover, a good friend and newspaper reporter for The Daily Pilot, introduces the mystery searchers to a forgotten mansion in the forest—at midnight! The mansion is under siege from unknown “hunters.” Who are they? What are they searching for? Good, old-fashioned detective work and a couple of technology tools ultimately reveal the truth. A desperate race ensues, but time is running out.


Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media

Author: Akira Ishimaru

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 343

ISBN-13: 1483273156

DOWNLOAD EBOOK

Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly and continuously in time and space. Examples are clear air turbulence, jet engine exhaust, tropospheric and ionospheric turbulence, ocean turbulence, and biological media such as tissue and muscle. Rough surface examples are the ocean surface, planetary surfaces, interfaces between different biological media, and the surface roughness of an optical fiber. This book is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media, and particularly for those involved in communication through such media and remote sensing of the characteristics of these media.