The authors have two main objectives in these notes. First, they wish to give a complete presentation of the theory of existence and uniqueness of random solutions of the most general random Volterra and Fredholm equations which have been studied heretofore. Second, to emphasize the application of their theory to stochastic systems which have not been extensively studied before due to mathematical difficulties that arise. These notes will be of value to mathematicians, probabilists, and engineers who are working in the area of systems theory or to those who are interested in the theory of random equations.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.
This book presents the conceptional line which goes from the observation of physical systems to their modeling and analysis by ordinary differential nonlinear stochastic equations.First, the problems of the mathematical modeling of physical systems are developed. These mathematical models are then classified in terms of ordinary differential stochastic equations from which both qualitative and quantitative results are developed.Each one of the various subjects are methods dealt with ends with an application in mathematical physics or in nonlinear mechanics.
This book is a collection of thoroughly refereed papers presented at the 26th IFIP TC 7 Conference on System Modeling and Optimization, held in Klagenfurt, Austria, in September 2013. The 34 revised papers were carefully selected from numerous submissions. They cover the latest progress in a wide range of topics such as optimal control of ordinary and partial differential equations, modeling and simulation, inverse problems, nonlinear, discrete, and stochastic optimization as well as industrial applications.
This book is the outcome of the CIMPA School on Statistical Methods and Applications in Insurance and Finance, held in Marrakech and Kelaat M'gouna (Morocco) in April 2013. It presents two lectures and seven refereed papers from the school, offering the reader important insights into key topics. The first of the lectures, by Frederic Viens, addresses risk management via hedging in discrete and continuous time, while the second, by Boualem Djehiche, reviews statistical estimation methods applied to life and disability insurance. The refereed papers offer diverse perspectives and extensive discussions on subjects including optimal control, financial modeling using stochastic differential equations, pricing and hedging of financial derivatives, and sensitivity analysis. Each chapter of the volume includes a comprehensive bibliography to promote further research.