A fully integrated view of the medical and surgical aspects of both vascular and cardiovascular disease. Covering the complete spectrum of angiology, from basic physiologic principles to phlebology, this is the only text of its kind, and will thus be a must for the libraries of cardiologists and cardiovascular surgeons alike.
This volume highlights and broadens our understanding of the correct use and the possible contraindications of contrast agents applied in radiology. Written by experts in the field, it not only focuses on the chemistry, physiochemical properties and pharmacokinetics of both iodinated and gadolinium-containing contrast agents, but also on the relevant safety issues such as frequency of their short- and long-term side effects and ways to avoid them nephrotoxicity risk related to the iodinated contrast agents NSF (nephrogenic systemic fibrosis) accumulation of gadolinium in the brain use of contrast agents in pediatric patients and pregnancy It also includes essential data on the use of contrast agents, such as scanning protocols, in the context of various clinical conditions. This comprehensive manual addresses all professionals involved in radiological imaging and is an invaluable tool for radiologists and technologists, as well as for residents and clinicians.
Short presentation of aspects important for the application of X-ray contrast media: Composition and properties of contrast media, handling with respect to stability, purity and sterility; applications, interaction, risks; drugs for prophylaxis and treatment of side effects.
"The book consists of nine chapters. The first 3 chapters give a broad overview of the acoustic theory for bubble-sound interaction, both linear and nonlinear. Most contrast agents are stabilized in a shell, and this shell can have a strong influence on the interaction between the bubbles and the ultrasound. The effect of the shell is given special attention, as this is not easily found in other bubble literature. Chapters 4, 5, 6 and 7 describe experimental and theoretical methods used to characterize the acoustic properties of the agents, and results of studies on some agents. Chapter 8 shows how the theory and the experimental results can be combined and used to model various phenomena by means of computer simulations. The main purpose of the simulations is to get insight into the mechanisms behind the described phenomena, not to get accurate predictions and values.
Magnetic Resonance Imaging (MRI) is one of the most important tools in clinical diagnostics and biomedical research. The number of MRI scanners operating around the world is estimated to be approximately 20,000, and the development of contrast agents, currently used in about a third of the 50 million clinical MRI examinations performed every year, has largely contributed to this significant achievement. This completely revised and extended second edition: Includes new chapters on targeted, responsive, PARACEST and nanoparticle MRI contrast agents. Covers the basic chemistries, MR physics and the most important techniques used by chemists in the characterization of MRI agents from every angle from synthesis to safety considerations. Is written for all of those involved in the development and application of contrast agents in MRI. Presented in colour, it provides readers with true representation and easy interpretation of the images. A word from the Authors: Twelve years after the first edition published, we are convinced that the chemistry of MRI agents has a bright future. By assembling all important information on the design principles and functioning of magnetic resonance imaging probes, this book intends to be a useful tool for both experts and newcomers in the field. We hope that it helps inspire further work in order to create more efficient and specific imaging probes that will allow materializing the dream of seeing even deeper and better inside the living organisms. Reviews of the First Edition: "...attempts, for the first time, to review the whole spectrum of involved chemical disciplines in this technique..."—Journal of the American Chemical Society "...well balanced in its scope and attention to detail...a valuable addition to the library of MR scientists..."—NMR in Biomedicine
Examines in detail the different clinical applications of microbubble-based contrast agents. Explains the principles underlying the use of contrast-specific imaging techniques and the examination methodology. Contains numerous high-quality illustrations, including many in color. Written by recognized experts.
This revised edition of Contrast Media: Safety Issues and Guidelines, updates the successful first edition and contains new chapters. It provides an invaluable, unique and unparalleled source of information on the safety issues relating to contrast media.
Contrast media are drugs by default. Had there been no default, there would be no need for a related pharmacology, and thus no need for this book. Radiographic contrast media (CM) are substances whose primary purpose is to enhance diagnostic information of medical imaging systems. The position of CM in pharmacology is unique. First, there is the unusual requirement of biological inertness. An ideal CM should be completely biologically inert, i.e., stable, not pharmacologically active, and efficiently and innocuously excretable. Because they fail to meet these requirements, CM must be considered drugs. The second unusual aspect of CM is that they are used in large quantities, their annual production being measured in tens of tons. It is not in spite of, but because of, the increased use of new radiographic systems, computed tomography, digital radiography, etc., that consumption is on the rise. And, it is not likely that the other emerging imaging modalities - NMR, ultrasonography, etc. - will displace radiographic CM soon; it is quite probable that these remarkable compounds will continue to play an active role in diagnostic imaging in the foreseeable future.
With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.
Extracellular MRI and X-ray contrast agents are characterized by their phar- cokinetic behaviour.After intravascular injection their plasma-level time curve is characeterized by two phases. The agents are rapidly distributed between plasma and interstitial spaces followed by renal elimination with a terminal half-live of approximatly 1–2 hours. They are excreted via the kidneys in unchanged form by glomerular filtration. Extracellular water-soluble contrast agents to be applied for X-ray imaging were introduced into clinical practice in 1923. Since that time they have proved to be most valuable tools in diagnostics.They contain iodine as the element of choice with a sufficiently high atomic weight difference to organic tissue. As positive contrast agents their attenuation of radiation is higher compared with the attenuation of the surrounding tissue. By this contrast enhancement X-ray diagnostics could be improved dramatically. In 2,4,6-triiodobenzoic acid derivatives iodine is firmly bound. Nowadays diamides of the 2,4,6-triiodo-5-acylamino-isophthalic acid like iopromide (Ultravist, Fig. 1) are used as non-ionic (neutral) X-ray contrast agents in most cases [1].