This volume reviews the recent progress of B physics, and discusses theoretical and experimental aspects of the physics which will be explored at the B factory. CP violation and new physics beyond the Standard Model are the main issues of the discussion.
The Standard Model (SM) of particle physics has withstood thus far every attempt by experimentalists to show that it does not describe data. We discuss the SM in some detail, focusing on the mechanism of fermion mixing, which represents one of its most intriguing aspects. We discuss how this mechanism can be tested in b-quark decays, and how b decays can be used to extract information on physics beyond the SM. We review experimental techniques in b physics, focusing on recent results and highlighting future prospects. Particular attention is devoted to recent results from b decays into a hadron, a lepton and an anti-lepton, that show discrepancies with the SM predictions — the so-called B-physics anomalies — whose statistical significance has been increasing steadily. We discuss these experiments in a detailed manner, and also provide theoretical interpretation of these results in terms of physics beyond the SM.
Presenting the proceedings of FPCP 2018, this book reviews the status quo of flavor physics and discusses the latest findings in this exciting area. Flavor physics has been instrumental in the formulation and understanding of the standard model, and it is possible that the direction of new physics will be significantly influenced by flavor sector, also known as the intensity frontier, making it possible to indirectly test the existence of new physics up to a very high scale, beyond that of the energy frontier scale accessible at the LHC. The book is intended for academics around the globe involved in particle physics research, professionals associated with the related technologies and those who are interested in learning about the future of physics and its prospects and directions.
This is a conference that explores areas of common interest between nuclear physicists, high energy (particle) physicists, and astrophysicists. These areas range from studies of the strong interactions that bind the nuclei together, to physics of the very early Universe. They include such topics as the detailed behavior of neutrinos and searches for "new physics", that is phenomena that cannot be accounted for by our current theories.
This proceedings volume reviews the current status of research in major frontline areas of physics. With contributions from leading physicists, the areas of research covered in the various papers include condensed matter physics, particle physics, quantum optics, quantum computing and laser physics, nanosciences, synchrotron radiation, relativity, astrophysics and cosmology, and plasma physics.
This proceedings volume contains the latest developments in particle physics in collider experiments. The contributions cover new results such as the production of quark-gluon plasma in the heavy-ion collider, the new techniques for precision measurement at low energies, and the status of neutrino physics at various laboratories including the new facilities that are at the planning stage.
For a long time after the discovery in 1964, by Christenson, Cronin, Fitch and Turlay, that the long-lived neutral kaon decays both into three and into two pions, which has since been taken as proof of CP violation, successive new and more precise experiments confirmed the original evidence and provided results compatible with a phenomenological description confining the CP violation to the mixing between neutral kaons and antikaons. However the Standard Model, with three generations of quarks, linking as it does CP violation to the presence of a single non trivial phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix, implies that if CP violation exists at all, then it is a general property of weak interactions, appearing in transitions were amplitudes involving all three quark families interfere with each other, producing effects with a magnitude related to that of the CKM coefficients. This fact has stimulated an impressive amount of theoretical work leading in many cases to precise predictions. This publication reviews the field, from both the theoretical and experimental point of view, while planning for the forthcoming experimentation at LHC and considering possible new facilities for kaon, B meson and neutrino physics. Abstracted in Inspec